Domenzain I, et al. (2025) Computational biology predicts metabolic engineering targets for increased production of 103 valuable chemicals in yeast. Proc Natl Acad Sci U S A 122(9):e2417322122 PMID:39999169
Lenitz I, et al. (2025) ChIP-exo and CRISPRi/a illuminate the role of Pdr1 and Yap1 in acetic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 91(4):e0182424 PMID:40035556
Li X, et al. (2025) Modular deregulation of central carbon metabolism for efficient xylose utilization in Saccharomyces cerevisiae. Nat Commun 16(1):4551 PMID:40379631
Chen Y, et al. (2024) Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat Protoc 19(3):629-667 PMID:38238583
Hao H, et al. (2024) Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size. Proc Natl Acad Sci U S A 121(47):e2413486121 PMID:39536088
Jiao X, et al. (2024) De novo production of protoberberine and benzophenanthridine alkaloids through metabolic engineering of yeast. Nat Commun 15(1):8759 PMID:39384562
Qin N, et al. (2024) Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 15(1):1591 PMID:38383540
Zhang C, et al. (2024) Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Mol Syst Biol 20(10):1134-1150 PMID:39134886
Chen M, et al. (2023) Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation. Proc Natl Acad Sci U S A 120(25):e2302779120 PMID:37307493
Qin N, et al. (2023) Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell 186(4):748-763.e15 PMID:36758548
Valle-Rodríguez JO, et al. (2023) Directed evolution of a wax ester synthase for production of fatty acid ethyl esters in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 107(9):2921-2932 PMID:36976306
Yao Z, et al. (2023) A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 16(1):37 PMID:36870984
Yuan L, et al. (2023) HGTphyloDetect: facilitating the identification and phylogenetic analysis of horizontal gene transfer. Brief Bioinform 24(2) PMID:36752380
Zhao Y, et al. (2023) Protein engineering of invertase for enhancing yeast dough fermentation under high-sucrose conditions. Folia Microbiol (Praha) 68(2):207-217 PMID:36201138
Chen Y and Nielsen J (2022) Yeast has evolved to minimize protein resource cost for synthesizing amino acids. Proc Natl Acad Sci U S A 119(4) PMID:35042799
Domenzain I, et al. (2022) Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat Commun 13(1):3766 PMID:35773252
Ishchuk OP, et al. (2022) Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 119(30):e2108245119 PMID:35858410
Li F, et al. (2022) Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nat Commun 13(1):2969 PMID:35624178
Tung TT and Nielsen J (2022) Drug Discovery and Development on Pma1, Where Are We Now? A Critical Review from 1995 to 2022. ChemMedChem 17(19):e202200356 PMID:36094750
Xia J, et al. (2022) Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nat Commun 13(1):2819 PMID:35595797
Xie T, et al. (2022) Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Res 22(1) PMID:35595470
Zhang G, et al. (2022) Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metab Eng 73:225-234 PMID:35987431
Caspeta L, et al. (2021) The yeastGemMap: A process diagram to assist yeast systems-metabolic studies. Biotechnol Bioeng 118(12):4800-4814 PMID:34569624
Doughty TW, et al. (2021) A single chromosome strain of S. cerevisiae exhibits diminished ethanol metabolism and tolerance. BMC Genomics 22(1):688 PMID:34551706
Gong G, et al. (2021) GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in Saccharomyces cerevisiae. ACS Synth Biol 10(6):1328-1337 PMID:34015926
Liu Z, et al. (2021) Expression of fungal biosynthetic gene clusters in S. cerevisiae for natural product discovery. Synth Syst Biotechnol 6(1):20-22 PMID:33553706
Malina C, et al. (2021) Constraint-based modeling of yeast mitochondria reveals the dynamics of protein import and iron-sulfur cluster biogenesis. iScience 24(11):103294 PMID:34755100
Malina C, et al. (2021) Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proc Natl Acad Sci U S A 118(51) PMID:34903663
Sánchez BJ, et al. (2021) Benchmarking accuracy and precision of intensity-based absolute quantification of protein abundances in Saccharomyces cerevisiae. Proteomics 21(6):e2000093 PMID:33452728
Sánchez BJ, et al. (2021) Benchmarking accuracy and precision of intensity-based absolute quantification of protein abundances in Saccharomyces cerevisiae. Proteomics 21(15):e2170095 PMID:34357672
Wang Y, et al. (2021) Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microb Cell Fact 20(1):134 PMID:34261490
Zhao Y, et al. (2021) Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng 118(5):2043-2052 PMID:33605428
Österberg L, et al. (2021) A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Comput Biol 17(4):e1008891 PMID:33836000
Björkeroth J, et al. (2020) Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media. Proc Natl Acad Sci U S A 117(35):21804-21812 PMID:32817546
Börlin CS, et al. (2020) The transcription factor Leu3 shows differential binding behavior in response to changing leucine availability. FEMS Microbiol Lett 367(13) PMID:32589214
Campbell K, et al. (2020) Building blocks are synthesized on demand during the yeast cell cycle. Proc Natl Acad Sci U S A 117(14):7575-7583 PMID:32213592
Di Bartolomeo F, et al. (2020) Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proc Natl Acad Sci U S A 117(13):7524-7535 PMID:32184324
Doughty TW, et al. (2020) Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nat Commun 11(1):2144 PMID:32358542
Dzanaeva L, et al. (2020) The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Cell Biol Int 44(8):1606-1615 PMID:32227552
Hellgren J, et al. (2020) Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metab Eng 62:150-160 PMID:32911054
Hu Y, et al. (2020) Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Proc Natl Acad Sci U S A 117(37):22974-22983 PMID:32873649
Lu H, et al. (2020) Author Correction: A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun 11(1):5443 PMID:33093448
Pereira R, et al. (2020) Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci U S A 117(45):27954-27961 PMID:33106428
Qi Q, et al. (2020) Different Routes of Protein Folding Contribute to Improved Protein Production in Saccharomyces cerevisiae. mBio 11(6) PMID:33173005
Qin N, et al. (2020) Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synth Biol 9(12):3236-3244 PMID:33186034
Wang M, et al. (2020) Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Front Bioeng Biotechnol 8:594081 PMID:33178680
Ye C, et al. (2020) Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C. Biotechnol Bioeng 117(5):1562-1574 PMID:32022245
Yu R and Nielsen J (2020) Yeast systems biology in understanding principles of physiology underlying complex human diseases. Curr Opin Biotechnol 63:63-69 PMID:31901548
Zhang J, et al. (2020) Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat Commun 11(1):4880 PMID:32978375
Zhang Y, et al. (2020) Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microb Cell Fact 19(1):226 PMID:33302960
Zrimec J, et al. (2020) Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun 11(1):6141 PMID:33262328
Bergenholm D, et al. (2019) Construction of mini-chemostats for high-throughput strain characterization. Biotechnol Bioeng 116(5):1029-1038 PMID:30659597
Bergman A, et al. (2019) Effects of overexpression of STB5 in Saccharomyces cerevisiae on fatty acid biosynthesis, physiology and transcriptome. FEMS Yeast Res 19(3) PMID:30924859
Börlin CS, et al. (2019) Saccharomyces cerevisiae displays a stable transcription start site landscape in multiple conditions. FEMS Yeast Res 19(2) PMID:30590648
Chen Y and Nielsen J (2019) Energy metabolism controls phenotypes by protein efficiency and allocation. Proc Natl Acad Sci U S A 116(35):17592-17597 PMID:31405984
Chen Y, et al. (2019) Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges. Methods Mol Biol 2049:329-345 PMID:31602620
Dabirian Y, et al. (2019) Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in Saccharomyces cerevisiae. ACS Synth Biol 8(9):1968-1975 PMID:31373795
Ferreira R, et al. (2019) Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation. ACS Synth Biol 8(11):2457-2463 PMID:31577419
Holland P, et al. (2019) Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions. Nucleic Acids Res 47(10):4986-5000 PMID:30976803
Lu H, et al. (2019) A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun 10(1):3586 PMID:31395883
Ma T, et al. (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134-142 PMID:30471360
Mondeel TDGA, et al. (2019) ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Res 47(15):7825-7841 PMID:31299083
Pereira R, et al. (2019) Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 56:130-141 PMID:31550508
Sánchez BJ, et al. (2019) SLIMEr: probing flexibility of lipid metabolism in yeast with an improved constraint-based modeling framework. BMC Syst Biol 13(1):4 PMID:30634957
Tiukova IA, et al. (2019) Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 366(17) PMID:31665273
Wang G, et al. (2019) RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 116(19):9324-9332 PMID:31000602
Wei Y, et al. (2019) Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through transcriptomics and functional heterologous expression. Appl Microbiol Biotechnol 103(9):3727-3736 PMID:30915502
Zhang Y, et al. (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 10(1):1053 PMID:30837474
Bao J, et al. (2018) Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express 8(1):37 PMID:29532188
Bergenholm D, et al. (2018) Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids. Biotechnol Bioeng 115(4):932-942 PMID:29313898
Bergenholm D, et al. (2018) Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion. mSystems 3(4) PMID:30073202
Ferreira R, et al. (2018) Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc Natl Acad Sci U S A 115(6):1262-1267 PMID:29358378
Ferreira R, et al. (2018) Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metab Eng Commun 6:22-27 PMID:29896445
Gossing M, et al. (2018) Impact of forced fatty acid synthesis on metabolism and physiology of Saccharomyces cerevisiae. FEMS Yeast Res 18(8) PMID:30169781
Huang M, et al. (2018) Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 115(47):E11025-E11032 PMID:30397111
Jenjaroenpun P, et al. (2018) Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res 46(7):e38 PMID:29346625
Malina C, et al. (2018) Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 18(5) PMID:29788060
Ouyang L, et al. (2018) Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Res 18(8) PMID:30107458
Tung TT, et al. (2018) LEGO-Inspired Drug Design: Unveiling a Class of Benzo[d]thiazoles Containing a 3,4-Dihydroxyphenyl Moiety as Plasma Membrane H+ -ATPase Inhibitors. ChemMedChem 13(1):37-47 PMID:29139202
Yu T, et al. (2018) Author Correction: Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat Commun 9:16220 PMID:30004090
Zhang Y, et al. (2018) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons. Biotechnol Bioeng 115(9):2139-2147 PMID:29873064
Ferreira R, et al. (2017) Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes. FEBS Lett 591(20):3288-3295 PMID:28884816
Fletcher E, et al. (2017) Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng 39:19-28 PMID:27815194
Hu Y, et al. (2017) Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. J Ind Microbiol Biotechnol 44(7):1065-1072 PMID:28547322
Lahtvee PJ, et al. (2017) Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Syst 4(5):495-504.e5 PMID:28365149
Liu G, et al. (2017) Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Res 17(6) PMID:28910986
Rodriguez A, et al. (2017) Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metab Eng 44:265-272 PMID:29101089
Rodriguez A, et al. (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245(Pt B):1645-1654 PMID:28634125
Sánchez BJ, et al. (2017) Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol Syst Biol 13(8):935 PMID:28779005
Teixeira PG, et al. (2017) Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microb Cell Fact 16(1):45 PMID:28298234
Tippmann S, et al. (2017) Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44(6):911-922 PMID:28185100
Wang G, et al. (2017) Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotechnol 48:77-84 PMID:28410475
Wei Y, et al. (2017) Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express 7(1):34 PMID:28168573
Yu T, et al. (2017) Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat Commun 8:15587 PMID:28548095
Zhang Y, et al. (2017) Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Res 17(8) PMID:29096021
Bergman A, et al. (2016) Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express 6(1):115 PMID:27848233
Fletcher E, et al. (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113(6):1164-70 PMID:26524089
Kildegaard KR, et al. (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 15:53 PMID:26980206
Liu G, et al. (2016) Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae. mBio 7(3) PMID:27143390
Martínez JL, et al. (2016) Heme metabolism in stress regulation and protein production: From Cinderella to a key player. Bioengineered 7(2):112-5 PMID:26731643
Martínez JL, et al. (2016) The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae. Metab Eng Commun 3:205-210 PMID:29468124
Maury J, et al. (2016) EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 11(3):e0150394 PMID:26934490
Shi S, et al. (2016) Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 16(1):fov108 PMID:26658002
Tippmann S, et al. (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113(1):72-81 PMID:26108688
de Jong BW, et al. (2016) Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters. FEMS Yeast Res 16(1):fov105 PMID:26590613
Borodina I, et al. (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57-64 PMID:25447643
Caspeta L and Nielsen J (2015) Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. mBio 6(4):e00431 PMID:26199325
Caspeta L, et al. (2015) Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 3:184 PMID:26618154
Chen Y, et al. (2015) Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res 15(3) PMID:25852051
Huang M, et al. (2015) Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Natl Acad Sci U S A 112(34):E4689-96 PMID:26261321
Jullesson D, et al. (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395-402 PMID:25728067
Kildegaard KR, et al. (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132-136 PMID:34150516
Krivoruchko A and Nielsen J (2015) Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr Opin Biotechnol 35:7-15 PMID:25544013
Liu L, et al. (2015) Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae. FEMS Yeast Res 15(7) PMID:26220688
Martínez JL, et al. (2015) Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae. Biotechnol Bioeng 112(1):181-8 PMID:25082441
Qin J, et al. (2015) Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat Commun 6:8224 PMID:26345617
Rodriguez A, et al. (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181-8 PMID:26292030
Zhang Y, et al. (2015) Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth. FEMS Yeast Res 15(4):fov024 PMID:25979691
Zhang Y, et al. (2015) Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain. Microb Cell Fact 14:116 PMID:26253003
de Jong BW, et al. (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42(3):477-86 PMID:25422103
Borodina I and Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609-20 PMID:24677744
Chen Y, et al. (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22:104-9 PMID:24502850
Chumnanpuen P, et al. (2014) Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae. Int J Genomics 2014:894296 PMID:24616891
Garcia-Albornoz M, et al. (2014) BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Res 42(Web Server issue):W175-81 PMID:24792167
Hou J, et al. (2014) Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res 14(3):481-94 PMID:24237754
Jensen NB, et al. (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238-48 PMID:24151867
Kildegaard KR, et al. (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57-66 PMID:25263954
Liu L, et al. (2014) Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng 21:9-16 PMID:24188961
Liu Z, et al. (2014) Improved production of a heterologous amylase in Saccharomyces cerevisiae by inverse metabolic engineering. Appl Environ Microbiol 80(17):5542-50 PMID:24973076
Martínez JL, et al. (2014) Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res 14(4):654-62 PMID:24655306
Navarrete C, et al. (2014) Enhanced ethanol production and reduced glycerol formation in fps1∆ mutants of Saccharomyces cerevisiae engineered for improved redox balancing. AMB Express 4(1):86 PMID:26267115
Shi S, et al. (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 5(3):e01130-14 PMID:24803522
Sjostrom SL, et al. (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806-13 PMID:24366236
Tyo KE, et al. (2014) Impact of protein uptake and degradation on recombinant protein secretion in yeast. Appl Microbiol Biotechnol 98(16):7149-59 PMID:24816620
de Jong BW, et al. (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Fact 13(1):39 PMID:24618091
Chumnanpuen P, et al. (2013) Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 7 Suppl 3(Suppl 3):S7 PMID:24456840
Hong KK and Nielsen J (2013) Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose. Metab Eng 16:78-86 PMID:23376593
Khoomrung S, et al. (2013) Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal Chem 85(10):4912-9 PMID:23634639
Knuf C, et al. (2013) Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol 79(19):6050-8 PMID:23892740
Kocharin K and Nielsen J (2013) Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae. AMB Express 3(1):18 PMID:23514405
Kocharin K, et al. (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol Bioeng 110(8):2216-24 PMID:23456608
Krivoruchko A, et al. (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40(9):1051-6 PMID:23760499
Liu Z, et al. (2013) Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae. Appl Environ Microbiol 79(9):2962-7 PMID:23435897
Liu Z, et al. (2013) Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(20):8955-62 PMID:23392765
Petelenz-Kurdziel E, et al. (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput Biol 9(6):e1003084 PMID:23762021
Tippmann S, et al. (2013) From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8(12):1435-44 PMID:24227704
Väremo L, et al. (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41(8):4378-91 PMID:23444143
van Eijsden RG, et al. (2013) A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study. Biotechnol Lett 35(6):891-900 PMID:23417260
Österlund T, et al. (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:36 PMID:23631471
Chen Y, et al. (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12(5):598-607 PMID:22487308
Chumnanpuen P, et al. (2012) Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Genet Genomics 287(7):541-54 PMID:22622761
Chumnanpuen P, et al. (2012) Lipid biosynthesis monitored at the single-cell level in Saccharomyces cerevisiae. Biotechnol J 7(5):594-601 PMID:22442011
Geijer C, et al. (2012) Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics 13:554 PMID:23066959
Hong KK and Nielsen J (2012) Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering. Appl Environ Microbiol 78(21):7579-86 PMID:22904057
Hong KK and Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671-90 PMID:22388689
Hong KK, et al. (2012) Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. FEMS Yeast Res 12(7):741-7 PMID:22716310
Hou J, et al. (2012) Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng 14(2):120-7 PMID:22265825
Khoomrung S, et al. (2012) Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94(6):1637-46 PMID:22569641
Kocharin K, et al. (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2(1):52 PMID:23009357
Liu Z, et al. (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259-68 PMID:22179756
Nijkamp JF, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36 PMID:22448915
Nookaew I, et al. (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40(20):10084-97 PMID:22965124
Osterlund T, et al. (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979-88 PMID:21846501
Papini M, et al. (2012) Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl Microbiol Biotechnol 95(4):1001-10 PMID:22367611
Papini M, et al. (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Fact 11:136 PMID:23043429
Scalcinati G, et al. (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 14(2):91-103 PMID:22330799
Scalcinati G, et al. (2012) Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 11:117 PMID:22938570
Scalcinati G, et al. (2012) Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 12(5):582-97 PMID:22487265
Shi S, et al. (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7 PMID:22364438
Tyo KE, et al. (2012) Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol 10:16 PMID:22380681
de Jong B, et al. (2012) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 23(4):624-30 PMID:22169890
Albertsen L, et al. (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033-40 PMID:21148687
Hong KK, et al. (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci U S A 108(29):12179-84 PMID:21715660
Madsen KM, et al. (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763 PMID:21445244
Piddocke MP, et al. (2011) Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques. Microb Cell Fact 10:27 PMID:21513553
Ruenwai R, et al. (2011) Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J 6(3):343-56 PMID:21184438
Asadollahi MA, et al. (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106(1):86-96 PMID:20091767
Bordel S and Nielsen J (2010) Identification of flux control in metabolic networks using non-equilibrium thermodynamics. Metab Eng 12(4):369-77 PMID:20302968
Bordel S, et al. (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6(7):e1000859 PMID:20657658
Canelas AB, et al. (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145 PMID:21266995
Nandy SK, et al. (2010) Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation. BMC Syst Biol 4:68 PMID:20500839
Olivares-Hernández R, et al. (2010) Integrative analysis using proteome and transcriptome data from yeast to unravel regulatory patterns at post-transcriptional level. Biotechnol Bioeng 107(5):865-75 PMID:20635383
Otero JM, et al. (2010) Yeast biological networks unfold the interplay of antioxidants, genome and phenotype, and reveal a novel regulator of the oxidative stress response. PLoS One 5(10):e13606 PMID:21049050
Otero JM, et al. (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723 PMID:21176163
Partow S, et al. (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955-64 PMID:20625983
Petranovic D, et al. (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10(8):1046-59 PMID:20977625
Siewers V, et al. (2010) Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae. Biotechnol Bioeng 106(5):841-4 PMID:20564619
Zhang J, et al. (2010) The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol Microbiol 77(2):371-83 PMID:20545859
van Eunen K, et al. (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277(3):749-60 PMID:20067525
Asadollahi MA, et al. (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328-34 PMID:19619667
Flagfeldt DB, et al. (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26(10):545-51 PMID:19681174
Moxley JF, et al. (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 106(16):6477-82 PMID:19346491
Preker P, et al. (2009) RNA polymerase plays both sides: vivid and bidirectional transcription around and upstream of active promoters. Cell Cycle 8(8):1106-7 PMID:19305135
Rossouw D, et al. (2009) Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Appl Environ Microbiol 75(20):6600-12 PMID:19700545
Salazar M, et al. (2009) Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis. Mol Genet Genomics 282(6):571-86 PMID:19784673
Usaite R, et al. (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5:319 PMID:19888214
Asadollahi MA, et al. (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666-77 PMID:17705244
Fazio A, et al. (2008) Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design. BMC Genomics 9:341 PMID:18638364
Herrgård MJ, et al. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155-60 PMID:18846089
Nielsen J and Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122-31 PMID:17727659
Nookaew I, et al. (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71 PMID:18687109
Petranovic D and Nielsen J (2008) Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26(11):584-90 PMID:18801589
Pizarro FJ, et al. (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74(20):6358-68 PMID:18723660
Usaite R, et al. (2008) Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 7(1):266-75 PMID:18173223
Usaite R, et al. (2008) Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted. J Biotechnol 133(1):73-81 PMID:17949842
Wattanachaisaereekul S, et al. (2008) Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab Eng 10(5):246-54 PMID:18555717
de Jongh WA, et al. (2008) The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 101(2):317-26 PMID:18421797
Cakir T, et al. (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol 1:18 PMID:17408508
Mas S, et al. (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng 96(5):1014-22 PMID:17022091
Nookaew I, et al. (2007) Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks. Biotechnol Bioeng 97(6):1535-49 PMID:17238207
Vemuri GN, et al. (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(7):2402-7 PMID:17287356
Westergaard SL, et al. (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96(1):134-45 PMID:16878332
van der Werf MJ, et al. (2007) Standard reporting requirements for biological samples in metabolomics experiments: microbial and in vitro biology experiments. Metabolomics 3:189-194 PMID:25653575
Bro C, et al. (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102-11 PMID:16289778
Eckert-Boulet N, et al. (2006) Deletion of RTS1, encoding a regulatory subunit of protein phosphatase 2A, results in constitutive amino acid signaling via increased Stp1p processing. Eukaryot Cell 5(1):174-9 PMID:16400180
Raghevendran V, et al. (2006) Hap4 is not essential for activation of respiration at low specific growth rates in Saccharomyces cerevisiae. J Biol Chem 281(18):12308-14 PMID:16522629
Regenberg B, et al. (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7(11):R107 PMID:17105650
Usaite R, et al. (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl Environ Microbiol 72(9):6194-203 PMID:16957246
Bro C, et al. (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465-72 PMID:16269670
Eckert-Boulet N, et al. (2005) Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Curr Genet 47(3):139-49 PMID:15611869
Maury J, et al. (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19-51 PMID:16270655
Patil KR and Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685-9 PMID:15710883
Raghevendran V, et al. (2005) Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an example. Biochem Mol Biol Educ 33(6):404-10 PMID:21638610
Seker T, et al. (2005) Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 67(1):119-24 PMID:15448940
Smedsgaard J and Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273-86 PMID:15618299
Villas-Bôas SG, et al. (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388(Pt 2):669-77 PMID:15667247
Bro C, et al. (2004) Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol Bioeng 85(3):269-76 PMID:14748081
Eckert-Boulet N, et al. (2004) Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast 21(8):635-48 PMID:15197729
Grotkjaer T, et al. (2004) Impact of transamination reactions and protein turnover on labeling dynamics in (13)C-labeling experiments. Biotechnol Bioeng 86(2):209-16 PMID:15052641
Moreira dos Santos M, et al. (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6(4):352-63 PMID:15491864
Raghevendran V, et al. (2004) Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21(9):769-79 PMID:15282800
Westergaard SL, et al. (2004) Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis. FEMS Yeast Res 5(3):193-204 PMID:15556081
Famili I, et al. (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100(23):13134-9 PMID:14578455
Moreira dos Santos M, et al. (2003) Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4(1):59-68 PMID:14554197
dos Santos MM, et al. (2003) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates. Eukaryot Cell 2(3):599-608 PMID:12796305
Förster J, et al. (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79(7):703-12 PMID:12209793
Nielsen J and Olsson L (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology. FEMS Yeast Res 2(2):175-81 PMID:12702306
Piper MD, et al. (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277(40):37001-8 PMID:12121991
Christensen B, et al. (2001) Simple and robust method for estimation of the split between the oxidative pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway in microorganisms. Biotechnol Bioeng 74(6):517-23 PMID:11494219
Gombert AK, et al. (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441-51 PMID:11157958
Harger JW, et al. (2001) Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 286(1):216-24 PMID:11448174
Nissen TL, et al. (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18(1):19-32 PMID:11124698
Ostergaard S, et al. (2001) In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: metabolic fluxes and metabolite levels. Biotechnol Bioeng 73(5):412-25 PMID:11320512
Ostergaard S, et al. (2001) The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. FEMS Yeast Res 1(1):47-55 PMID:12702462
Shastry M, et al. (2001) Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology (Reading) 147(Pt 2):383-390 PMID:11158355
Zaldivar J, et al. (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1-2):17-34 PMID:11499926
Christensen B and Nielsen J (2000) Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209-31 PMID:10592531
Nissen TL, et al. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2(1):69-77 PMID:10935936
Olsson L and Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol 26(9-10):785-792 PMID:10862886
Ostergaard S, et al. (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283-6 PMID:11101808
Peter Smits H, et al. (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16(14):1325-34 PMID:11015729
van Dijken JP, et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9-10):706-714 PMID:10862876
Aleksenko A, et al. (1999) Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. Mol Microbiol 33(3):599-611 PMID:10417650
Klein CJ, et al. (1999) Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J Biotechnol 68(2-3):197-212 PMID:10194857
Rønnow B, et al. (1999) Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast. J Biotechnol 72(1-2):213-28 PMID:12680392
Dynesen J, et al. (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl Microbiol Biotechnol 50(5):579-82 PMID:9866176
Justice MC, et al. (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273(6):3148-51 PMID:9452424
Klein CJL, et al. (1998) Glucose control in Saccharomyces cerevisiae: the role of Mig1 in metabolic functions. Microbiology (Reading) 144 ( Pt 1):13-24 PMID:9467897
Carlsen M, et al. (1997) Modeling the growth and proteinase A production in continuous cultures of recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 55(2):447-54 PMID:18636503
Olsson L, et al. (1997) Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption. Appl Environ Microbiol 63(6):2366-71 PMID:9172357
Kelly R, et al. (1996) Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol 178(15):4381-91 PMID:8755864
Klein CJ, et al. (1996) Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae. Appl Environ Microbiol 62(12):4441-9 PMID:8953715