AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Braus GH
  • References

Author: Braus GH


References 108 references


No citations for this author.

Download References (.nbib)

  • Galka D, et al. (2024) Inhibition of 26S proteasome activity by α-synuclein is mediated by the proteasomal chaperone Rpn14/PAAF1. Aging Cell 23(5):e14128 PMID:38415292
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marquardt L, et al. (2023) Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy 19(1):278-295 PMID:35574911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Taylor JT, et al. (2022) Adhesion as a Focus in Trichoderma-Root Interactions. J Fungi (Basel) 8(4) PMID:35448603
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerke J, et al. (2021) Draft Genome Sequence of Saccharomyces cerevisiae LW2591Y, a Laboratory Strain for In Vivo Multigene Assemblies. Microbiol Resour Announc 10(9) PMID:33664139
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popova B, et al. (2021) DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genet 17(3):e1009407 PMID:33657088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popova B, et al. (2021) α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast. Cells 10(9) PMID:34571878
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popova B, et al. (2021) Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Front Mol Neurosci 14:659926 PMID:33912013
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerke J, et al. (2020) Production of the Fragrance Geraniol in Peroxisomes of a Product-Tolerant Baker's Yeast. Front Bioeng Biotechnol 8:582052 PMID:33102464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sinha A, et al. (2020) The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis. FASEB J 34(4):4870-4889 PMID:32077151
    • SGD Paper
    • DOI full text
    • PubMed
  • Brás IC, et al. (2019) Yeast-Based Screens to Target Alpha-Synuclein Toxicity. Methods Mol Biol 1948:145-156 PMID:30771176
    • SGD Paper
    • DOI full text
    • PubMed
  • Bakti F, et al. (2018) Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model. Front Microbiol 9:744 PMID:29706948
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Magalhães RSS, et al. (2018) The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Res 18(6) PMID:30007297
    • SGD Paper
    • DOI full text
    • PubMed
  • Popova B, et al. (2018) Sumoylation Protects Against β-Synuclein Toxicity in Yeast. Front Mol Neurosci 11:94 PMID:29636661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Opitz N, et al. (2017) Capturing the Asc1p/Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Mol Cell Proteomics 16(12):2199-2218 PMID:28982715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmitt K, et al. (2017) Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol 37(3) PMID:27821475
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kleinknecht A, et al. (2016) C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genet 12(6):e1006098 PMID:27341336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tenreiro S, et al. (2016) Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Hum Mol Genet 25(2):275-90 PMID:26586132
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin CJ, et al. (2015) Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathog 11(11):e1005205 PMID:26529322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popova B, et al. (2015) Posttranslational Modifications and Clearing of α-Synuclein Aggregates in Yeast. Biomolecules 5(2):617-34 PMID:25915624
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shahpasandzadeh H, et al. (2014) Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions. J Biol Chem 289(45):31224-40 PMID:25231978
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Herzog B, et al. (2013) Mutual cross talk between the regulators Hac1 of the unfolded protein response and Gcn4 of the general amino acid control of Saccharomyces cerevisiae. Eukaryot Cell 12(8):1142-54 PMID:23794510
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rachfall N, et al. (2013) RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 12(1):87-105 PMID:23071099
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petroi D, et al. (2012) Aggregate clearance of α-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 287(33):27567-79 PMID:22722939
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Herzog B, et al. (2011) A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts. J Mol Biol 405(4):909-25 PMID:21111745
    • SGD Paper
    • DOI full text
    • PubMed
  • Rachfall N, et al. (2011) 5'TRU: identification and analysis of translationally regulative 5'untranslated regions in amino acid starved yeast cells. Mol Cell Proteomics 10(6):M110.003350 PMID:21444828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuczera T, et al. (2010) Dissection of mitotic functions of the yeast cyclin Clb2. Cell Cycle 9(13):2611-9 PMID:20581451
    • SGD Paper
    • DOI full text
    • PubMed
  • Bayram O, et al. (2009) The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production in Aspergillus nidulans. Mol Microbiol 71(5):1278-95 PMID:19210625
    • SGD Paper
    • DOI full text
    • PubMed
  • Padmanabhan N, et al. (2009) The yeast HtrA orthologue Ynm3 is a protease with chaperone activity that aids survival under heat stress. Mol Biol Cell 20(1):68-77 PMID:18946088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Streckfuss-Bömeke K, et al. (2009) Degradation of Saccharomyces cerevisiae transcription factor Gcn4 requires a C-terminal nuclear localization signal in the cyclin Pcl5. Eukaryot Cell 8(4):496-510 PMID:19218424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fischer C, et al. (2008) Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae. FEMS Yeast Res 8(2):225-36 PMID:17999676
    • SGD Paper
    • DOI full text
    • PubMed
  • Luttik MA, et al. (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10(3-4):141-53 PMID:18372204
    • SGD Paper
    • DOI full text
    • PubMed
  • Sari F, et al. (2008) The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J Mol Biol 378(1):31-43 PMID:18339400
    • SGD Paper
    • DOI full text
    • PubMed
  • Fichtner L, et al. (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66(5):1276-89 PMID:18001350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sari F, et al. (2007) A process independent of the anaphase-promoting complex contributes to instability of the yeast S phase cyclin Clb5. J Biol Chem 282(36):26614-22 PMID:17620341
    • SGD Paper
    • DOI full text
    • PubMed
  • Valerius O, et al. (2007) The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics 6(11):1968-79 PMID:17704055
    • SGD Paper
    • DOI full text
    • PubMed
  • Bömeke K, et al. (2006) Yeast Gcn4p stabilization is initiated by the dissociation of the nuclear Pho85p/Pcl5p complex. Mol Biol Cell 17(7):2952-62 PMID:16611745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kleinschmidt M, et al. (2006) The yeast CPC2/ASC1 gene is regulated by the transcription factors Fhl1p and Ifh1p. Curr Genet 49(4):218-28 PMID:16402205
    • SGD Paper
    • DOI full text
    • PubMed
  • Krappmann S, et al. (2006) The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 61(1):76-88 PMID:16824096
    • SGD Paper
    • DOI full text
    • PubMed
  • Strittmatter AW, et al. (2006) FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Mol Genet Genomics 276(2):113-25 PMID:16721598
    • SGD Paper
    • DOI full text
    • PubMed
  • Helmstaedt K, et al. (2005) Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102(28):9784-9 PMID:15987779
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Kleinschmidt M, et al. (2005) Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Mol Genet Genomics 273(5):382-93 PMID:15843968
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Brückner S, et al. (2004) Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Curr Genet 46(6):331-42 PMID:15558284
    • SGD Paper
    • DOI full text
    • PubMed
  • Dieckhoff P, et al. (2004) Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol 51(5):1375-87 PMID:14982631
    • SGD Paper
    • DOI full text
    • PubMed
  • Krappmann S, et al. (2004) The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 52(3):785-99 PMID:15101984
    • SGD Paper
    • DOI full text
    • PubMed
  • König V, et al. (2004) Substrate and metal complexes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism. J Mol Biol 337(3):675-90 PMID:15019786
    • SGD Paper
    • DOI full text
    • PubMed
  • Pries R, et al. (2004) Nuclear import of yeast Gcn4p requires karyopherins Srp1p and Kap95p. Mol Genet Genomics 271(3):257-66 PMID:14648200
    • SGD Paper
    • DOI full text
    • PubMed
  • Bolte M, et al. (2003) Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae. Microbiology (Reading) 149(Pt 5):1205-1216 PMID:12724382
    • SGD Paper
    • DOI full text
    • PubMed
  • Braus GH, et al. (2003) Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14(10):4272-84 PMID:14517335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Düvel K, et al. (2003) Polyadenylation of rRNA- and tRNA-based yeast transcripts cleaved by internal ribozyme activity. Curr Genet 43(4):255-62 PMID:12748813
    • SGD Paper
    • DOI full text
    • PubMed
  • Hartmann M, et al. (2003) Evolution of feedback-inhibited beta /alpha barrel isoenzymes by gene duplication and a single mutation. Proc Natl Acad Sci U S A 100(3):862-7 PMID:12540830
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Irniger S and Braus GH (2003) Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 44(1):8-18 PMID:14508604
    • SGD Paper
    • DOI full text
    • PubMed
  • Valerius O, et al. (2003) Nucleosome position-dependent and -independent activation of HIS7 epression in Saccharomyces cerevisiae by different transcriptional activators. Eukaryot Cell 2(5):876-85 PMID:14555470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bolte M, et al. (2002) Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc Natl Acad Sci U S A 99(7):4385-90 PMID:11917129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Düvel K, et al. (2002) Replacement of the yeast TRP4 3' untranslated region by a hammerhead ribozyme results in a stable and efficiently exported mRNA that lacks a poly(A) tail. RNA 8(3):336-44 PMID:12003493
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Helmstaedt K, et al. (2002) Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase. Proc Natl Acad Sci U S A 99(10):6631-6 PMID:11997452
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Köhler T, et al. (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1(5):673-86 PMID:12455687
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pries R, et al. (2002) Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. Eukaryot Cell 1(5):663-72 PMID:12455686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valerius O, et al. (2002) Multiple factors prevent transcriptional interference at the yeast ARO4-HIS7 locus. J Biol Chem 277(24):21440-5 PMID:11937506
    • SGD Paper
    • DOI full text
    • PubMed
  • Busch S, et al. (2001) Regulation of the Aspergillus nidulans hisB gene by histidine starvation. Curr Genet 38(6):314-22 PMID:11270573
    • SGD Paper
    • DOI full text
    • PubMed
  • Grundmann O, et al. (2001) Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276(28):25661-71 PMID:11356835
    • SGD Paper
    • DOI full text
    • PubMed
  • Helmstaedt K, et al. (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 65(3):404-21, table of contents PMID:11528003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoffmann B, et al. (2001) Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 12(9):2846-57 PMID:11553722
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mösch HU, et al. (2001) Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae. Mol Cell Biol 21(1):235-48 PMID:11113198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strittmatter AW, et al. (2001) Induction of jlbA mRNA synthesis for a putative bZIP protein of Aspergillus nidulans by amino acid starvation. Curr Genet 39(5-6):327-34 PMID:11525406
    • SGD Paper
    • DOI full text
    • PubMed
  • Valerius O, et al. (2001) Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation. Fungal Genet Biol 32(1):21-31 PMID:11277623
    • SGD Paper
    • DOI full text
    • PubMed
  • Bäumer M, et al. (2000) Yeast Ran-binding protein Yrb1p is required for efficient proteolysis of cell cycle regulatory proteins Pds1p and Sic1p. J Biol Chem 275(49):38929-37 PMID:10991951
    • SGD Paper
    • DOI full text
    • PubMed
  • Bäumer M, et al. (2000) Two different modes of cyclin clb2 proteolysis during mitosis in Saccharomyces cerevisiae. FEBS Lett 468(2-3):142-8 PMID:10692575
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoffmann B, et al. (2000) Developmental and metabolic regulation of the phosphoglucomutase-encoding gene, pgmB, of Aspergillus nidulans. Mol Gen Genet 262(6):1001-11 PMID:10660061
    • SGD Paper
    • DOI full text
    • PubMed
  • Irniger S, et al. (2000) Glucose and ras activity influence the ubiquitin ligases APC/C and SCF in Saccharomyces cerevisiae. Genetics 154(4):1509-21 PMID:10747049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krappmann S, et al. (2000) HARO7 encodes chorismate mutase of the methylotrophic yeast Hansenula polymorpha and is derepressed upon methanol utilization. J Bacteriol 182(15):4188-97 PMID:10894726
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krappmann S, et al. (2000) Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97(25):13585-90 PMID:11095720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Taheri N, et al. (2000) Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO J 19(24):6686-96 PMID:11118203
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Düvel K and Braus GH (1999) Different positioning elements select poly(A) sites at the 3'-end of GCN4 mRNA in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 27(24):4751-8 PMID:10572175
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Düvel K, et al. (1999) A single point mutation in the yeast TRP4 gene affects efficiency of mRNA 3' end processing and alters selection of the poly(A) site. Nucleic Acids Res 27(5):1289-95 PMID:9973616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoffmann B, et al. (1999) The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation. Mol Microbiol 31(3):807-22 PMID:10048025
    • SGD Paper
    • DOI full text
    • PubMed
  • Krappmann S, et al. (1999) The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J Biol Chem 274(32):22275-82 PMID:10428795
    • SGD Paper
    • DOI full text
    • PubMed
  • Mösch HU, et al. (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10(5):1325-35 PMID:10233147
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schneider TR, et al. (1999) Crystallization and preliminary X-ray analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine inhibitable) from Saccharomyces cerevisiae. Acta Crystallogr D Biol Crystallogr 55(Pt 9):1586-8 PMID:10489454
    • SGD Paper
    • DOI full text
    • PubMed
  • Albrecht G, et al. (1998) Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem 273(21):12696-702 PMID:9582292
    • SGD Paper
    • DOI full text
    • PubMed
  • Schnappauf G, et al. (1998) Separation of inhibition and activation of the allosteric yeast chorismate mutase. Proc Natl Acad Sci U S A 95(6):2868-73 PMID:9501182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schnappauf G, et al. (1998) Tyrosine and tryptophan act through the same binding site at the dimer interface of yeast chorismate mutase. J Biol Chem 273(27):17012-7 PMID:9642265
    • SGD Paper
    • DOI full text
    • PubMed
  • Schnappauf G, et al. (1998) The two 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isoenzymes from Saccharomyces cerevisiae show different kinetic modes of inhibition. Arch Microbiol 169(6):517-24 PMID:9575238
    • SGD Paper
    • DOI full text
    • PubMed
  • Egli CM, et al. (1997) Sequence requirements of the bidirectional yeast TRP4 mRNA 3'-end formation signal. Nucleic Acids Res 25(2):417-22 PMID:9016573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schnappauf G, et al. (1997) A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions. Proc Natl Acad Sci U S A 94(16):8491-6 PMID:9238004
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Springer C, et al. (1997) The adjacent yeast genes ARO4 and HIS7 carry no intergenic region. J Biol Chem 272(42):26318-24 PMID:9334203
    • SGD Paper
    • DOI full text
    • PubMed
  • Springer C, et al. (1997) Regulation of the yeast HIS7 gene by the global transcription factor Abf1p. Mol Gen Genet 256(2):136-46 PMID:9349705
    • SGD Paper
    • DOI full text
    • PubMed
  • Wanke C, et al. (1997) The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper. Mol Microbiol 23(1):23-33 PMID:9004217
    • SGD Paper
    • DOI full text
    • PubMed
  • Künzler M, et al. (1996) The transcriptional apparatus required for mRNA encoding genes in the yeast Saccharomyces cerevisiae emerges from a jigsaw puzzle of transcription factors. FEMS Microbiol Rev 19(2):117-36 PMID:8988567
    • SGD Paper
    • DOI full text
    • PubMed
  • Springer C, et al. (1996) Amino acid and adenine cross-pathway regulation act through the same 5'-TGACTC-3' motif in the yeast HIS7 promoter. J Biol Chem 271(47):29637-43 PMID:8939895
    • SGD Paper
    • DOI full text
    • PubMed
  • Drysdale CM, et al. (1995) The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol 15(3):1220-33 PMID:7862116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Egli CM, et al. (1995) A complex unidirectional signal element mediates GCN4 mRNA 3' end formation in Saccharomyces cerevisiae. Mol Cell Biol 15(5):2466-73 PMID:7739531
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graf R, et al. (1995) Modulation of the allosteric equilibrium of yeast chorismate mutase by variation of a single amino acid residue. J Bacteriol 177(6):1645-8 PMID:7883726
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Künzler M, et al. (1995) Activation and repression of the yeast ARO3 gene by global transcription factors. Mol Microbiol 15(1):167-78 PMID:7752892
    • SGD Paper
    • DOI full text
    • PubMed
  • Melcher K, et al. (1995) Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 27(6):501-8 PMID:7553933
    • SGD Paper
    • DOI full text
    • PubMed
  • Künzler M, et al. (1994) Functional differences between mammalian transcription activation domains at the yeast GAL1 promoter. EMBO J 13(3):641-5 PMID:8313909
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graf R, et al. (1993) Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae. J Bacteriol 175(4):1061-8 PMID:8432699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graf R, et al. (1993) YMC1, a yeast gene encoding a new putative mitochondrial carrier protein. Yeast 9(3):301-5 PMID:8488731
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuenzler M, et al. (1993) Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae. J Bacteriol 175(17):5548-58 PMID:8366040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Irniger S, et al. (1992) The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference. Nucleic Acids Res 20(18):4733-9 PMID:1408785
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Künzler M, et al. (1992) Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae. Gene 113(1):67-74 PMID:1348717
    • SGD Paper
    • DOI full text
    • PubMed
  • Mösch HU, et al. (1992) Sequence-specific initiator elements focus initiation of transcription to distinct sites in the yeast TRP4 promoter. EMBO J 11(12):4583-90 PMID:1425591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Braus GH (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 55(3):349-70 PMID:1943992
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Irniger S, et al. (1991) Different classes of polyadenylation sites in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11(6):3060-9 PMID:2038317
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones DG, et al. (1991) Cloning and characterisation of a yeast homolog of the mammalian ribosomal protein L9. Nucleic Acids Res 19(20):5785 PMID:1945856
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones DG, et al. (1991) Molecular cloning, characterization and analysis of the regulation of the ARO2 gene, encoding chorismate synthase, of Saccharomyces cerevisiae. Mol Microbiol 5(9):2143-52 PMID:1837329
    • SGD Paper
    • DOI full text
    • PubMed
  • Mösch HU, et al. (1991) Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4. J Biol Chem 266(30):20453-6 PMID:1939099
    • SGD Paper
    • PubMed
  • Schmidheini T, et al. (1990) A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae. Mol Gen Genet 224(1):57-64 PMID:2277632
    • SGD Paper
    • DOI full text
    • PubMed
  • Braus GH, et al. (1988) The role of the TRP1 gene in yeast tryptophan biosynthesis. J Biol Chem 263(16):7868-75 PMID:3286643
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top