AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Workman JL
  • References

Author: Workman JL


References 137 references


No citations for this author.

Download References (.nbib)

  • Church MC and Workman JL (2024) The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 52(3):1327-1337 PMID:38666605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Church MC, et al. (2023) The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control. Nucleic Acids Res 51(19):10278-10291 PMID:37650639
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Amigo R, et al. (2022) The linker histone Hho1 modulates the activity of ATP-dependent chromatin remodeling complexes. Biochim Biophys Acta Gene Regul Mech 1865(1):194781 PMID:34963628
    • SGD Paper
    • DOI full text
    • PubMed
  • Bhattacharya S, et al. (2021) The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 297(3):101075 PMID:34391778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen W, et al. (2021) The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat Metab 3(7):983-1000 PMID:34183849
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang S, et al. (2021) Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 12(1):594 PMID:33500413
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oh S, et al. (2020) Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. Elife 9 PMID:33372657
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soffers JHM and Workman JL (2020) The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Genes Dev 34(19-20):1287-1303 PMID:33004486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mei Q, et al. (2019) Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res 47(7):3434-3449 PMID:30759223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu Y, et al. (2019) Glycolysis regulates gene expression by promoting the crosstalk between H3K4 trimethylation and H3K14 acetylation in Saccharomyces cerevisiae. J Genet Genomics 46(12):561-574 PMID:32014433
    • SGD Paper
    • DOI full text
    • PubMed
  • Oh S, et al. (2018) Histone H3 threonine 11 phosphorylation by Sch9 and CK2 regulates chronological lifespan by controlling the nutritional stress response. Elife 7 PMID:29938647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dutta A, et al. (2017) Composition and Function of Mutant Swi/Snf Complexes. Cell Rep 18(9):2124-2134 PMID:28249159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hepp MI, et al. (2017) Role of Nhp6 and Hmo1 in SWI/SNF occupancy and nucleosome landscape at gene regulatory regions. Biochim Biophys Acta Gene Regul Mech 1860(3):316-326 PMID:28089519
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gilmore JM, et al. (2016) WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage. PLoS One 11(6):e0155492 PMID:27248496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang F, et al. (2016) Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease. Mol Cell Biol 36(14):1900-7 PMID:27185879
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Venkatesh S, et al. (2016) Selective suppression of antisense transcription by Set2-mediated H3K36 methylation. Nat Commun 7:13610 PMID:27892455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Workman JL (2016) CHROMATIN. It takes teamwork to modify chromatin. Science 351(6274):667 PMID:26912847
    • SGD Paper
    • DOI full text
    • PubMed
  • Li S, et al. (2015) Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Mol Cell 60(3):408-21 PMID:26527276
    • SGD Paper
    • DOI full text
    • PubMed
  • Dutta A, et al. (2014) Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev 28(20):2314-30 PMID:25319830
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hepp MI, et al. (2014) Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast high mobility group box (HMGB) proteins. Biochim Biophys Acta 1839(9):764-72 PMID:24972368
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hewawasam GS, et al. (2014) Phosphorylation by casein kinase 2 facilitates Psh1 protein-assisted degradation of Cse4 protein. J Biol Chem 289(42):29297-309 PMID:25183013
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mohan RD, et al. (2014) Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes Dev 28(3):259-72 PMID:24493646
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mosley AL, et al. (2013) Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation. Mol Cell Proteomics 12(6):1530-8 PMID:23418395
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Venkatesh S and Workman JL (2013) Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. Wiley Interdiscip Rev Dev Biol 2(5):685-700 PMID:24014454
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Venkatesh S and Workman JL (2013) Non-coding transcription SETs up regulation. Cell Res 23(3):311-3 PMID:23147798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghosh S, et al. (2012) Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 23(13):2546-59 PMID:22593213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gilmore JM, et al. (2012) Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 11(4):M111.011544 PMID:22199229
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuryan BG, et al. (2012) Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro. Proc Natl Acad Sci U S A 109(6):1931-6 PMID:22308335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lin CH, et al. (2012) HP1a targets the Drosophila KDM4A demethylase to a subset of heterochromatic genes to regulate H3K36me3 levels. PLoS One 7(6):e39758 PMID:22761891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smith KT and Workman JL (2012) Chromatin proteins: key responders to stress. PLoS Biol 10(7):e1001371 PMID:22859908
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smolle M, et al. (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884-92 PMID:22922743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Venkatesh S, et al. (2012) Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489(7416):452-5 PMID:22914091
    • SGD Paper
    • DOI full text
    • PubMed
  • Bian C, et al. (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829-42 PMID:21685874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chittuluru JR, et al. (2011) Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 18(11):1196-203 PMID:21984211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gkikopoulos T, et al. (2011) A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333(6050):1758-60 PMID:21940898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee KK, et al. (2011) Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 7:503 PMID:21734642
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mosley AL, et al. (2011) Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics 10(2):M110.000687 PMID:21048197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smolle M and Workman JL (2011) Signaling through chromatin: setting the scene at kinetochores. Cell 146(5):671-2 PMID:21884927
    • SGD Paper
    • DOI full text
    • PubMed
  • Govind CK, et al. (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39(2):234-46 PMID:20670892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hewawasam G, et al. (2010) Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 40(3):444-54 PMID:21070970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JH, et al. (2010) Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24(24):2766-71 PMID:21159817
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pattenden SG, et al. (2010) Features of cryptic promoters and their varied reliance on bromodomain-containing factors. PLoS One 5(9):e12927 PMID:20886085
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Camahort R, et al. (2009) Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35(6):794-805 PMID:19782029
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferreira ME, et al. (2009) Activator-binding domains of the SWI/SNF chromatin remodeling complex characterized in vitro are required for its recruitment to promoters in vivo. FEBS J 276(9):2557-65 PMID:19476494
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee KK, et al. (2009) Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin 2(1):2 PMID:19226466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mosley AL, et al. (2009) Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 34(2):168-78 PMID:19394294
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sardiu ME, et al. (2009) Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics. PLoS One 4(10):e7310 PMID:19806189
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suganuma T and Workman JL (2008) Crosstalk among Histone Modifications. Cell 135(4):604-7 PMID:19013272
    • SGD Paper
    • DOI full text
    • PubMed
  • Weake VM and Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29(6):653-63 PMID:18374642
    • SGD Paper
    • DOI full text
    • PubMed
  • Gutiérrez JL, et al. (2007) Activation domains drive nucleosome eviction by SWI/SNF. EMBO J 26(3):730-40 PMID:17235287
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li B, et al. (2007) Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21(11):1422-30 PMID:17545470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li B, et al. (2007) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050-4 PMID:17510366
    • SGD Paper
    • DOI full text
    • PubMed
  • Li B, et al. (2007) The role of chromatin during transcription. Cell 128(4):707-19 PMID:17320508
    • SGD Paper
    • DOI full text
    • PubMed
  • Carey M, et al. (2006) RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 24(3):481-7 PMID:17081996
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chandy M, et al. (2006) SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot Cell 5(10):1738-47 PMID:17030999
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Florens L, et al. (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40(4):303-11 PMID:17101441
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guelman S, et al. (2006) The essential gene wda encodes a WD40 repeat subunit of Drosophila SAGA required for histone H3 acetylation. Mol Cell Biol 26(19):7178-89 PMID:16980620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guelman S, et al. (2006) Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol Cell Biol 26(3):871-82 PMID:16428443
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shia WJ, et al. (2006) SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae. Genes Dev 20(18):2507-12 PMID:16980580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shia WJ, et al. (2006) Histone H4 lysine 16 acetylation breaks the genome's silence. Genome Biol 7(5):217 PMID:16689998
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cai Y, et al. (2005) The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem 280(14):13665-70 PMID:15647280
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrozza MJ, et al. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581-92 PMID:16286007
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrozza MJ, et al. (2005) Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim Biophys Acta 1731(2):77-87; discussion 75-6 PMID:16314178
    • SGD Paper
    • DOI full text
    • PubMed
  • Ercan S, et al. (2005) Yeast recombination enhancer is stimulated by transcription activation. Mol Cell Biol 25(18):7976-87 PMID:16135790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferreira ME, et al. (2005) Mechanism of transcription factor recruitment by acidic activators. J Biol Chem 280(23):21779-84 PMID:15826952
    • SGD Paper
    • DOI full text
    • PubMed
  • Jin J, et al. (2005) A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J Biol Chem 280(50):41207-12 PMID:16230350
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee D, et al. (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123(3):423-36 PMID:16269334
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee KK, et al. (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 25(3):1173-82 PMID:15657442
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li B, et al. (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102(51):18385-90 PMID:16344463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prochasson P, et al. (2005) The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev 19(21):2534-9 PMID:16264190
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Ruan C, et al. (2005) The DNA repair protein yKu80 regulates the function of recombination enhancer during yeast mating type switching. Mol Cell Biol 25(19):8476-85 PMID:16166630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shia WJ, et al. (2005) Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280(12):11987-94 PMID:15659401
    • SGD Paper
    • DOI full text
    • PubMed
  • Ercan S, et al. (2004) Global nucleosome distribution and the regulation of transcription in yeast. Genome Biol 5(10):243 PMID:15461807
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jeronimo C, et al. (2004) RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits. Mol Cell Biol 24(16):7043-58 PMID:15282305
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee KK, et al. (2004) Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans 32(Pt 6):899-903 PMID:15506919
    • SGD Paper
    • DOI full text
    • PubMed
  • Robert F, et al. (2004) Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 16(2):199-209 PMID:15494307
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Vermeulen M, et al. (2004) In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/SMRT corepressor complexes. Mol Cell Biol 24(6):2364-72 PMID:14993276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carrozza MJ, et al. (2003) Assay of activator recruitment of chromatin-modifying complexes. Methods Enzymol 371:536-44 PMID:14712727
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrozza MJ, et al. (2003) Repairing nucleosomes during transcription. Nat Struct Biol 10(11):879-80 PMID:14583736
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrozza MJ, et al. (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19(6):321-9 PMID:12801725
    • SGD Paper
    • DOI full text
    • PubMed
  • Kusch T, et al. (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol Cell Biol 23(9):3305-19 PMID:12697829
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li B, et al. (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11):8897-903 PMID:12511561
    • SGD Paper
    • DOI full text
    • PubMed
  • Nourani A, et al. (2003) Opposite role of yeast ING family members in p53-dependent transcriptional activation. J Biol Chem 278(21):19171-5 PMID:12672825
    • SGD Paper
    • DOI full text
    • PubMed
  • Prochasson P, et al. (2003) Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains. Mol Cell 12(4):983-90 PMID:14580348
    • SGD Paper
    • DOI full text
    • PubMed
  • Sutton A, et al. (2003) Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 278(19):16887-92 PMID:12626510
    • SGD Paper
    • DOI full text
    • PubMed
  • Carrozza MJ, et al. (2002) Gal80 confers specificity on HAT complex interactions with activators. J Biol Chem 277(27):24648-52 PMID:11986320
    • SGD Paper
    • DOI full text
    • PubMed
  • Hassan AH, et al. (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369-79 PMID:12419247
    • SGD Paper
    • DOI full text
    • PubMed
  • Howe L, et al. (2002) Yng1p modulates the activity of Sas3p as a component of the yeast NuA3 Hhistone acetyltransferase complex. Mol Cell Biol 22(14):5047-53 PMID:12077334
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neely KE and Workman JL (2002) Histone acetylation and chromatin remodeling: which comes first? Mol Genet Metab 76(1):1-5 PMID:12175774
    • SGD Paper
    • DOI full text
    • PubMed
  • Neely KE and Workman JL (2002) The complexity of chromatin remodeling and its links to cancer. Biochim Biophys Acta 1603(1):19-29 PMID:12242108
    • SGD Paper
    • DOI full text
    • PubMed
  • Neely KE, et al. (2002) Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 22(6):1615-25 PMID:11865042
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pray-Grant MG, et al. (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22(24):8774-86 PMID:12446794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brown CE, et al. (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292(5525):2333-7 PMID:11423663
    • SGD Paper
    • DOI full text
    • PubMed
  • Hassan AH, et al. (2001) Promoter targeting of chromatin-modifying complexes. Front Biosci 6:D1054-64 PMID:11532604
    • SGD Paper
    • DOI full text
    • PubMed
  • Hassan AH, et al. (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104(6):817-27 PMID:11290320
    • SGD Paper
    • DOI full text
    • PubMed
  • Howe L, et al. (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15(23):3144-54 PMID:11731478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Osada S, et al. (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15(23):3155-68 PMID:11731479
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brown CE, et al. (2000) The many HATs of transcription coactivators. Trends Biochem Sci 25(1):15-9 PMID:10637607
    • SGD Paper
    • DOI full text
    • PubMed
  • John S, et al. (2000) The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14(10):1196-208 PMID:10817755
    • SGD Paper
    • PMC full text
    • PubMed
  • Lechner T, et al. (2000) Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3[middle dot]Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J Biol Chem 275(52):40961-6 PMID:11024051
    • SGD Paper
    • DOI full text
    • PubMed
  • Peterson CL and Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10(2):187-92 PMID:10753786
    • SGD Paper
    • DOI full text
    • PubMed
  • Vignali M, et al. (2000) Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J 19(11):2629-40 PMID:10835360
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wallberg AE, et al. (2000) Recruitment of the SWI-SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor tau1 activation domain. Mol Cell Biol 20(6):2004-13 PMID:10688647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Allard S, et al. (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18(18):5108-19 PMID:10487762
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bazett-Jones DP, et al. (1999) The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol Cell Biol 19(2):1470-8 PMID:9891080
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eberharter A, et al. (1999) The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol Cell Biol 19(10):6621-31 PMID:10490601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grant PA, et al. (1999) Identification and analysis of native nucleosomal histone acetyltransferase complexes. Methods Mol Biol 119:311-7 PMID:10804521
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274(9):5895-900 PMID:10026213
    • SGD Paper
    • DOI full text
    • PubMed
  • Howe L, et al. (1999) Histone acetyltransferase complexes and their link to transcription. Crit Rev Eukaryot Gene Expr 9(3-4):231-43 PMID:10651240
    • SGD Paper
    • DOI full text
    • PubMed
  • Ikeda K, et al. (1999) Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol Cell Biol 19(1):855-63 PMID:9858608
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Massari ME, et al. (1999) A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol Cell 4(1):63-73 PMID:10445028
    • SGD Paper
    • DOI full text
    • PubMed
  • Neely KE, et al. (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 4(4):649-55 PMID:10549297
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohba R, et al. (1999) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol Cell Biol 19(3):2061-8 PMID:10022893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steger DJ and Workman JL (1999) Transcriptional analysis of purified histone acetyltransferase complexes. Methods 19(3):410-6 PMID:10579936
    • SGD Paper
    • DOI full text
    • PubMed
  • Sterner DE, et al. (1999) Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19(1):86-98 PMID:9858534
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Whitehouse I, et al. (1999) Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400(6746):784-7 PMID:10466730
    • SGD Paper
    • DOI full text
    • PubMed
  • Barlev NA, et al. (1998) Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 18(3):1349-58 PMID:9488450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Côté J, et al. (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 95(9):4947-52 PMID:9560208
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eberharter A, et al. (1998) Identification and analysis of yeast nucleosomal histone acetyltransferase complexes. Methods 15(4):315-21 PMID:9740719
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA and Workman JL (1998) Transcription. A lesson in sharing? Nature 396(6710):410-1 PMID:9853742
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94(1):45-53 PMID:9674426
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1998) The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol 8(5):193-7 PMID:9695838
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1998) The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2(6):863-7 PMID:9885573
    • SGD Paper
    • DOI full text
    • PubMed
  • Steger DJ, et al. (1998) Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc Natl Acad Sci U S A 95(22):12924-9 PMID:9789016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Utley RT, et al. (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394(6692):498-502 PMID:9697775
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11(13):1640-50 PMID:9224714
    • SGD Paper
    • DOI full text
    • PubMed
  • Utley RT, et al. (1997) SWI/SNF stimulates the formation of disparate activator-nucleosome complexes but is partially redundant with cooperative binding. J Biol Chem 272(19):12642-9 PMID:9139720
    • SGD Paper
    • DOI full text
    • PubMed
  • Owen-Hughes T, et al. (1996) Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273(5274):513-6 PMID:8662543
    • SGD Paper
    • DOI full text
    • PubMed
  • Steger DJ and Workman JL (1996) Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18(11):875-84 PMID:8939065
    • SGD Paper
    • DOI full text
    • PubMed
  • Adams CC and Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15(3):1405-21 PMID:7862134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Côté J, et al. (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265(5168):53-60 PMID:8016655
    • SGD Paper
    • DOI full text
    • PubMed
  • Owen-Hughes T and Workman JL (1994) Experimental analysis of chromatin function in transcription control. Crit Rev Eukaryot Gene Expr 4(4):403-41 PMID:7734837
    • SGD Paper
    • PubMed
  • Vettese-Dadey M, et al. (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14(2):970-81 PMID:8289837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng LZ, et al. (1992) Regulation of DNA replication in vitro by the transcriptional activation domain of GAL4-VP16. Proc Natl Acad Sci U S A 89(2):589-93 PMID:1309949
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Workman JL and Kingston RE (1992) Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258(5089):1780-4 PMID:1465613
    • SGD Paper
    • DOI full text
    • PubMed
  • Taylor IC, et al. (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev 5(7):1285-98 PMID:2065977
    • SGD Paper
    • DOI full text
    • PubMed
  • Workman JL, et al. (1991) Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64(3):533-44 PMID:1991320
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top