AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Watanabe D
  • References

Author: Watanabe D


References 63 references


No citations for this author.

Download References (.nbib)

  • Akasaka N, et al. (2025) Control of alcoholic fermentation through modulation of nitrogen metabolism in Saccharomyces cerevisiae. J Biotechnol PMID:40403977
    • SGD Paper
    • DOI full text
    • PubMed
  • Gong Y, et al. (2025) Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production. Biosci Biotechnol Biochem 89(6):910-917 PMID:40097305
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D (2024) Sake yeast symbiosis with lactic acid bacteria and alcoholic fermentation. Biosci Biotechnol Biochem 88(3):237-241 PMID:38006236
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D and Hashimoto W (2023) Adaptation of yeast Saccharomyces cerevisiae to grape-skin environment. Sci Rep 13(1):9279 PMID:37340058
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2023) Rational design of alcoholic fermentation targeting extracellular carbon. NPJ Sci Food 7(1):37 PMID:37479699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2023) Spontaneous Attenuation of Alcoholic Fermentation via the Dysfunction of Cyc8p in Saccharomyces cerevisiae. Int J Mol Sci 25(1) PMID:38203474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chadani T, et al. (2021) Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics. Cells 10(6) PMID:34073778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mat Nanyan NSB, et al. (2020) Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast. J Biosci Bioeng 129(4):423-427 PMID:31640922
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanahashi R, et al. (2020) The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source. FEMS Yeast Res 20(7) PMID:33201982
    • SGD Paper
    • DOI full text
    • PubMed
  • Abe T, et al. (2019) Characterization of a New Saccharomyces cerevisiae Isolated From Hibiscus Flower and Its Mutant With L-Leucine Accumulation for Awamori Brewing. Front Genet 10:490 PMID:31231421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mat Nanyan NSB, et al. (2019) Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae. FEMS Yeast Res 19(5) PMID:31328231
    • SGD Paper
    • DOI full text
    • PubMed
  • Mukai Y, et al. (2019) Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae. Microb Cell 6(10):482-490 PMID:31646149
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ohashi M, et al. (2019) Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 46(7):1039-1045 PMID:30963326
    • SGD Paper
    • DOI full text
    • PubMed
  • Shimoi H, et al. (2019) Meiotic chromosomal recombination defect in sake yeasts. J Biosci Bioeng 127(2):190-196 PMID:30181034
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D and Takagi H (2019) Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods. FEMS Yeast Res 19(6) PMID:31437265
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2019) Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Appl Environ Microbiol 85(1) PMID:30341081
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2019) Loss of Rim15p in shochu yeast alters carbon utilization during barley shochu fermentation. Biosci Biotechnol Biochem 83(8):1594-1597 PMID:30898039
    • SGD Paper
    • DOI full text
    • PubMed
  • Oomuro M, et al. (2018) Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing. J Biosci Bioeng 126(6):736-741 PMID:29921531
    • SGD Paper
    • DOI full text
    • PubMed
  • Takpho N, et al. (2018) High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metab Eng 46:60-67 PMID:29477860
    • SGD Paper
    • DOI full text
    • PubMed
  • Takpho N, et al. (2018) Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1. Microb Cell 5(6):293-299 PMID:29850466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2018) Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Appl Environ Microbiol 84(12) PMID:29625985
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2018) Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR+] non-genetic element. J Biosci Bioeng 126(5):624-629 PMID:29861316
    • SGD Paper
    • DOI full text
    • PubMed
  • Watcharawipas A, et al. (2018) Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Front Microbiol 9:2495 PMID:30459728
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanai M, et al. (2017) Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains. J Biosci Bioeng 123(1):8-14 PMID:27567046
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohnuki S, et al. (2017) Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding. G3 (Bethesda) 7(8):2807-2820 PMID:28642365
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D and Takagi H (2017) Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island. Genes Cells 22(2):130-134 PMID:28105742
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D and Takagi H (2017) Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Biosci Biotechnol Biochem 81(6):1061-1068 PMID:28485209
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2017) Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. J Biosci Bioeng 123(2):183-189 PMID:27633130
    • SGD Paper
    • DOI full text
    • PubMed
  • Watcharawipas A, et al. (2017) Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Res 17(8) PMID:29106511
    • SGD Paper
    • DOI full text
    • PubMed
  • Nasuno R, et al. (2016) Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast. J Biochem 159(2):271-7 PMID:26454877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishida I, et al. (2016) Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae. J Gen Appl Microbiol 62(3):132-9 PMID:27246536
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishida I, et al. (2016) Putative mitochondrial α-ketoglutarate-dependent dioxygenase Fmp12 controls utilization of proline as an energy source in Saccharomyces cerevisiae. Microb Cell 3(10):522-528 PMID:28357320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tatehashi Y, et al. (2016) γ-Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae. FEBS Lett 590(17):2906-14 PMID:27442630
    • SGD Paper
    • DOI full text
    • PubMed
  • Tsolmonbaatar A, et al. (2016) Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int J Food Microbiol 238:233-240 PMID:27672730
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2016) Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 82(1):340-51 PMID:26497456
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoshikawa Y, et al. (2016) Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide 57:85-91 PMID:27178802
    • SGD Paper
    • DOI full text
    • PubMed
  • Funahashi E, et al. (2015) Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production. J Biosci Bioeng 120(6):666-9 PMID:26188417
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirayama S, et al. (2015) Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11. J Biosci Bioeng 119(5):532-7 PMID:25454063
    • SGD Paper
    • DOI full text
    • PubMed
  • Uehara K, et al. (2015) Screening of high-level 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone-producing strains from a collection of gene deletion mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 81(1):453-60 PMID:25362059
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe D, et al. (2015) Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2. Biochem Biophys Res Commun 463(1-2):76-81 PMID:25998383
    • SGD Paper
    • DOI full text
    • PubMed
  • Wijayanti I, et al. (2015) Isolation and functional analysis of yeast ubiquitin ligase Rsp5 variants that alleviate the toxicity of human α-synuclein. J Biochem 157(4):251-60 PMID:25398992
    • SGD Paper
    • DOI full text
    • PubMed
  • Shiga T, et al. (2014) Quality control of plasma membrane proteins by Saccharomyces cerevisiae Nedd4-like ubiquitin ligase Rsp5p under environmental stress conditions. Eukaryot Cell 13(9):1191-9 PMID:25001409
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uesugi S, et al. (2014) Calcineurin inhibitors suppress the high-temperature stress sensitivity of the yeast ubiquitin ligase Rsp5 mutant: a new method of screening for calcineurin inhibitors. FEMS Yeast Res 14(4):567-74 PMID:25035868
    • SGD Paper
    • DOI full text
    • PubMed
  • Inaba T, et al. (2013) An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3(1):74 PMID:24373204
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Inai T, et al. (2013) Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2. J Biosci Bioeng 116(5):591-4 PMID:23757382
    • SGD Paper
    • DOI full text
    • PubMed
  • Wakabayashi K, et al. (2013) Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS). J Biosci Bioeng 116(4):475-9 PMID:23773701
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2013) Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 77(11):2255-62 PMID:24200791
    • SGD Paper
    • DOI full text
    • PubMed
  • Noguchi C, et al. (2012) Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 78(2):385-92 PMID:22057870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasano Y, et al. (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113(4):451-5 PMID:22178024
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2012) A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 78(11):4008-16 PMID:22447585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Akao T, et al. (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423-34 PMID:21900213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Urbanczyk H, et al. (2011) Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. J Biosci Bioeng 112(1):44-8 PMID:21459038
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2011) Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system. J Biosci Bioeng 112(1):54-7 PMID:21470907
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2011) Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. J Biosci Bioeng 112(6):577-82 PMID:21906996
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2011) Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p. Appl Environ Microbiol 77(3):934-41 PMID:21131516
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe M, et al. (2009) Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Curr Genet 55(4):365-80 PMID:19466415
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe M, et al. (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107(5):516-8 PMID:19393550
    • SGD Paper
    • DOI full text
    • PubMed
  • Saito TL, et al. (2004) SCMD: Saccharomyces cerevisiae Morphological Database. Nucleic Acids Res 32(Database issue):D319-22 PMID:14681423
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suzuki M, et al. (2004) Cell shape and growth of budding yeast cells in restrictive microenvironments. Yeast 21(12):983-9 PMID:15449311
    • SGD Paper
    • DOI full text
    • PubMed
  • Sekiya-Kawasaki M, et al. (2002) Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics 162(2):663-76 PMID:12399379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Utsugi T, et al. (2002) Movement of yeast 1,3-beta-glucan synthase is essential for uniform cell wall synthesis. Genes Cells 7(1):1-9 PMID:11856368
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2001) Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-beta-glucan synthesis. Yeast 18(10):943-51 PMID:11447600
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamaguchi Y, et al. (1999) Structure and function of the human transcription elongation factor DSIF. J Biol Chem 274(12):8085-92 PMID:10075709
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top