AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Thevelein JM
  • References

Author: Thevelein JM


References 217 references


No citations for this author.

Download References (.nbib)

  • Barbosa PGP, et al. (2024) Genomic approachesidentifySTT4 as a new component in glucose-induced activation of yeast plasma membrane H+-ATPase. Cell Calcium 123:102909 PMID:38861767
    • SGD Paper
    • DOI full text
    • PubMed
  • Demeke MM, et al. (2024) Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate. FEMS Yeast Res 24 PMID:38604750
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vanthienen W, et al. (2024) The novel family of Warbicin® compounds inhibits glucose uptake both in yeast and human cells and restrains cancer cell proliferation. Front Oncol 14:1411983 PMID:39239276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huo G, et al. (2022) Development of an industrial yeast strain for efficient production of 2,3-butanediol. Microb Cell Fact 21(1):199 PMID:36175998
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perpelea A, et al. (2022) Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metab Eng 69:1-14 PMID:34648971
    • SGD Paper
    • DOI full text
    • PubMed
  • Soares RC, et al. (2022) Cell Immobilization Using Alginate-Based Beads as a Protective Technique against Stressful Conditions of Hydrolysates for 2G Ethanol Production. Polymers (Basel) 14(12) PMID:35745976
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Souffriau B, et al. (2022) Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol 88(18):e0081422 PMID:36073947
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stojiljković M, et al. (2022) Whole-Genome Transformation of Yeast Promotes Rare Host Mutations with a Single Causative SNP Enhancing Acetic Acid Tolerance. Mol Cell Biol 42(4):e0056021 PMID:35311587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deparis Q, et al. (2021) Whole-Genome Transformation Promotes tRNA Anticodon Suppressor Mutations under Stress. mBio 12(2) PMID:33758086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gronchi N, et al. (2021) Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Front Microbiol 12:768562 PMID:35126325
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nicolaï T, et al. (2021) In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain. Microb Cell Fact 20(1):114 PMID:34098954
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peetermans A, et al. (2021) Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb Cell 8(6):111-130 PMID:34055965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vanmarcke G, et al. (2021) Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnol Biofuels 14(1):92 PMID:33836811
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vanmarcke G, et al. (2021) A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors. PLoS Genet 17(10):e1009826 PMID:34624020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Z, et al. (2021) Nutrient transceptors physically interact with the yeast S6/protein kinase B homolog, Sch9, a TOR kinase target. Biochem J 478(2):357-375 PMID:33394033
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Claes A, et al. (2020) Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab Eng 59:131-141 PMID:32114024
    • SGD Paper
    • DOI full text
    • PubMed
  • Dahabieh MS, et al. (2020) Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends Biotechnol 38(3):241-253 PMID:31653446
    • SGD Paper
    • DOI full text
    • PubMed
  • Milessi TS, et al. (2020) Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. Biotechnol Biofuels 13:85 PMID:32426034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stojiljkovic M, et al. (2020) Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. Biotechnol Biofuels 13:126 PMID:32695222
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Leemputte F, et al. (2020) Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast tps1Δ Mutant. mBio 11(5) PMID:33109759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Zeebroeck G, et al. (2020) Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA. Microb Cell 8(1):17-27 PMID:33490229
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cunha JT, et al. (2019) Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol Biofuels 12:20 PMID:30705706
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt S, et al. (2019) The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 43(3):193-222 PMID:30445501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Offei B, et al. (2019) Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res 29(9):1478-1494 PMID:31467028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alves SL, et al. (2018) Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease. Lett Appl Microbiol 67(4):377-383 PMID:29992585
    • SGD Paper
    • DOI full text
    • PubMed
  • Carmona-Gutierrez D, et al. (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5(1):4-31 PMID:29354647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt S, et al. (2018) Polygenic Analysis in Absence of Major Effector ATF1 Unveils Novel Components in Yeast Flavor Ester Biosynthesis. mBio 9(4) PMID:30154260
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steyfkens F, et al. (2018) Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 9:191 PMID:29662449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conrad M, et al. (2017) The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Res 17(5) PMID:28810702
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt S, et al. (2017) Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 8:14247 PMID:28165463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klein M, et al. (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 19(3):878-893 PMID:27878932
    • SGD Paper
    • DOI full text
    • PubMed
  • Peeters K, et al. (2017) Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 8(1):922 PMID:29030545
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Trindade de Carvalho B, et al. (2017) Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. mBio 8(6) PMID:29114020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meijnen JP, et al. (2016) Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 9:5 PMID:26740819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cray JA, et al. (2015) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 33:228-59 PMID:25841213
    • SGD Paper
    • DOI full text
    • PubMed
  • Demeke MM, et al. (2015) Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 11(3):e1005010 PMID:25738959
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kankipati HN, et al. (2015) Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation. J Biol Chem 290(16):10430-46 PMID:25724649
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Radecka D, et al. (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15(6) PMID:26126524
    • SGD Paper
    • DOI full text
    • PubMed
  • Ruyters S, et al. (2015) Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 42(1):39-48 PMID:25413210
    • SGD Paper
    • DOI full text
    • PubMed
  • Swinnen S, et al. (2015) Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. Eukaryot Cell 14(9):884-97 PMID:26116212
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conrad M, et al. (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254-99 PMID:24483210
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duitama J, et al. (2014) Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genomics 15:207 PMID:24640961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duitama J, et al. (2014) An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res 42(6):e44 PMID:24413664
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hubmann G, et al. (2014) Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Mol Biol 1152:17-42 PMID:24744025
    • SGD Paper
    • DOI full text
    • PubMed
  • Mukherjee V, et al. (2014) Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 98(22):9483-98 PMID:25267160
    • SGD Paper
    • DOI full text
    • PubMed
  • Pais TM, et al. (2014) QTL mapping by pooled-segregant whole-genome sequencing in yeast. Methods Mol Biol 1152:251-66 PMID:24744038
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Zeebroeck G, et al. (2014) Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol 93(2):213-33 PMID:24852066
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wallace-Salinas V, et al. (2014) Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express 4:56 PMID:25147754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aouida M, et al. (2013) Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. PLoS One 8(6):e65717 PMID:23755272
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Graeve S, et al. (2013) Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system. Biochem J 455(3):295-306 PMID:23924367
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Demeke MM, et al. (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6(1):120 PMID:23971950
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Demeke MM, et al. (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89 PMID:23800147
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hubmann G, et al. (2013) Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels 6(1):87 PMID:23759206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hubmann G, et al. (2013) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab Eng 17:68-81 PMID:23518242
    • SGD Paper
    • DOI full text
    • PubMed
  • Pais TM, et al. (2013) Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 9(6):e1003548 PMID:23754966
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schothorst J, et al. (2013) Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Curr Genet 59(4):197-206 PMID:24114446
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Y, et al. (2013) QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet 9(8):e1003693 PMID:23966873
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Castermans D, et al. (2012) Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 22(6):1058-77 PMID:22290422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haesendonckx S, et al. (2012) The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Biochem J 448(3):307-20 PMID:22957732
    • SGD Paper
    • DOI full text
    • PubMed
  • Kimpe M, et al. (2012) Pkh1 interacts with and phosphorylates components of the yeast Gcn2/eIF2α system. Biochem Biophys Res Commun 419(1):89-94 PMID:22326914
    • SGD Paper
    • DOI full text
    • PubMed
  • Rubio-Texeira M, et al. (2012) Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nat Chem Biol 8(4):400-8 PMID:22388927
    • SGD Paper
    • DOI full text
    • PubMed
  • Samyn DR, et al. (2012) Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J 445(3):413-22 PMID:22587366
    • SGD Paper
    • DOI full text
    • PubMed
  • Schepers W, et al. (2012) In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J Biol Chem 287(53):44130-42 PMID:23155055
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Souffriau B, et al. (2012) Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586(16):2494-9 PMID:22728241
    • SGD Paper
    • DOI full text
    • PubMed
  • Swinnen S, et al. (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):215-27 PMID:22150948
    • SGD Paper
    • DOI full text
    • PubMed
  • Swinnen S, et al. (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22(5):975-84 PMID:22399573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vandamme J, et al. (2012) Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal 24(8):1610-8 PMID:22522182
    • SGD Paper
    • DOI full text
    • PubMed
  • Kriel J, et al. (2011) From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays 33(11):870-9 PMID:21913212
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Zeebroeck G, et al. (2011) A split-ubiquitin two-hybrid screen for proteins physically interacting with the yeast amino acid transceptor Gap1 and ammonium transceptor Mep2. PLoS One 6(9):e24275 PMID:21912684
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Voordeckers K, et al. (2011) Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem 286(25):22017-27 PMID:21531713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popova Y, et al. (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci U S A 107(7):2890-5 PMID:20133652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rubio-Texeira M, et al. (2010) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10(2):134-49 PMID:19849717
    • SGD Paper
    • DOI full text
    • PubMed
  • Saerens SM, et al. (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3(2):165-77 PMID:21255318
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vianna CR, et al. (2010) Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26. J Mol Microbiol Biotechnol 19(3):140-6 PMID:20924200
    • SGD Paper
    • DOI full text
    • PubMed
  • Lundh F, et al. (2009) Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48(21):4497-505 PMID:19348508
    • SGD Paper
    • DOI full text
    • PubMed
  • Noubhani A, et al. (2009) The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae. J Biol Chem 284(40):27229-34 PMID:19620241
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ramon M, et al. (2009) Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ 32(8):1015-32 PMID:19344332
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM and Voordeckers K (2009) Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol 26(11):2407-14 PMID:19651853
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Zeebroeck G, et al. (2009) Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat Chem Biol 5(1):45-52 PMID:19060912
    • SGD Paper
    • DOI full text
    • PubMed
  • Verbelen PJ, et al. (2009) Impact of pitching rate on yeast fermentation performance and beer flavour. Appl Microbiol Biotechnol 82(1):155-67 PMID:19018524
    • SGD Paper
    • DOI full text
    • PubMed
  • Berthels NJ, et al. (2008) Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl Microbiol Biotechnol 77(5):1083-91 PMID:17955190
    • SGD Paper
    • DOI full text
    • PubMed
  • Nazarko VY, et al. (2008) G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int 32(5):502-4 PMID:18096414
    • SGD Paper
    • DOI full text
    • PubMed
  • Nazarko VY, et al. (2008) Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy 4(3):381-4 PMID:18227642
    • SGD Paper
    • DOI full text
    • PubMed
  • Saerens SM, et al. (2008) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80(6):1039-51 PMID:18751696
    • SGD Paper
    • DOI full text
    • PubMed
  • Saerens SM, et al. (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74(2):454-61 PMID:17993562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stasyk OG, et al. (2008) Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot Cell 7(4):735-46 PMID:18310355
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thevelein JM, et al. (2008) Novel mechanisms in nutrient activation of the yeast protein kinase A pathway. Acta Microbiol Immunol Hung 55(2):75-89 PMID:18595314
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Laere SD, et al. (2008) Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl Microbiol Biotechnol 78(5):783-92 PMID:18309479
    • SGD Paper
    • DOI full text
    • PubMed
  • Van de Velde S and Thevelein JM (2008) Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryot Cell 7(2):286-93 PMID:17890371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zvyagilskaya RA, et al. (2008) Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae. FEMS Yeast Res 8(5):685-96 PMID:18625026
    • SGD Paper
    • DOI full text
    • PubMed
  • Baena-González E, et al. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938-42 PMID:17671505
    • SGD Paper
    • DOI full text
    • PubMed
  • Blieck L, et al. (2007) Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Appl Environ Microbiol 73(3):815-24 PMID:17158628
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miranda JA, et al. (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226(6):1411-21 PMID:17628825
    • SGD Paper
    • DOI full text
    • PubMed
  • Peeters T, et al. (2007) Directly from Galpha to protein kinase A: the kelch repeat protein bypass of adenylate cyclase. Trends Biochem Sci 32(12):547-54 PMID:17983752
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordanova A, et al. (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38(2):197-202 PMID:16429158
    • SGD Paper
    • DOI full text
    • PubMed
  • Peeters T, et al. (2006) Kelch-repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A 103(35):13034-9 PMID:16924114
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saerens SM, et al. (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281(7):4446-56 PMID:16361250
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Nuland A, et al. (2006) Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Mol Microbiol 59(5):1485-505 PMID:16468990
    • SGD Paper
    • DOI full text
    • PubMed
  • Maidan MM, et al. (2005) Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 33(Pt 1):291-3 PMID:15667329
    • SGD Paper
    • DOI full text
    • PubMed
  • Roosen J, et al. (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55(3):862-80 PMID:15661010
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanghe A, et al. (2005) Heterologous aquaporin (AQY2-1) expression strongly enhances freeze tolerance of Schizosaccharomyces pombe. J Mol Microbiol Biotechnol 9(1):52-6 PMID:16254446
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM, et al. (2005) Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochem Soc Trans 33(Pt 1):253-6 PMID:15667319
    • SGD Paper
    • DOI full text
    • PubMed
  • Berthels NJ, et al. (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4(7):683-9 PMID:15093771
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279(45):46715-22 PMID:15339905
    • SGD Paper
    • DOI full text
    • PubMed
  • Holsbeeks I, et al. (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 29(10):556-64 PMID:15450611
    • SGD Paper
    • DOI full text
    • PubMed
  • Lemaire K, et al. (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 16(2):293-9 PMID:15494315
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanghe A, et al. (2004) Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol 70(6):3377-82 PMID:15184134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tisi R, et al. (2004) Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Curr Genet 45(2):83-9 PMID:14618376
    • SGD Paper
    • DOI full text
    • PubMed
  • Versele M, et al. (2004) The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Yeast 21(1):75-86 PMID:14745784
    • SGD Paper
    • DOI full text
    • PubMed
  • Verstrepen KJ and Thevelein JM (2004) Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae. Methods Mol Biol 267:259-66 PMID:15269429
    • SGD Paper
    • DOI full text
    • PubMed
  • Verstrepen KJ, et al. (2004) The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 21(4):367-77 PMID:15042596
    • SGD Paper
    • DOI full text
    • PubMed
  • Bonini BM, et al. (2003) Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae Tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim Biophys Acta 1606(1-3):83-93 PMID:14507429
    • SGD Paper
    • DOI full text
    • PubMed
  • Donaton MC, et al. (2003) The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 50(3):911-29 PMID:14617151
    • SGD Paper
    • DOI full text
    • PubMed
  • Geladé R, et al. (2003) Multi-level response of the yeast genome to glucose. Genome Biol 4(11):233 PMID:14611650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Giots F, et al. (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47(4):1163-81 PMID:12581367
    • SGD Paper
    • DOI full text
    • PubMed
  • Griffioen G, et al. (2003) Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem 278(26):23460-71 PMID:12704202
    • SGD Paper
    • DOI full text
    • PubMed
  • Portela P, et al. (2003) Activation state of protein kinase A as measured in permeabilised Saccharomyces cerevisiae cells correlates with PKA-controlled phenotypes in vivo. FEMS Yeast Res 3(1):119-26 PMID:12702255
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamás MJ, et al. (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278(8):6337-45 PMID:12486125
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanghe A, et al. (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129-76 PMID:14696318
    • SGD Paper
    • DOI full text
    • PubMed
  • Verstrepen KJ, et al. (2003) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96(2):110-8 PMID:16233495
    • SGD Paper
    • PubMed
  • Verstrepen KJ, et al. (2003) The Saccharomyces cerevisiae alcohol acetyl transferase gene ATF1 is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS Yeast Res 4(3):285-96 PMID:14654433
    • SGD Paper
    • DOI full text
    • PubMed
  • Verstrepen KJ, et al. (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69(9):5228-37 PMID:12957907
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brandão RL, et al. (2002) Evidence for involvement of Saccharomyces cerevisiae protein kinase C in glucose induction of HXT genes and derepression of SUC2. FEMS Yeast Res 2(2):93-102 PMID:12702297
    • SGD Paper
    • DOI full text
    • PubMed
  • Griffioen G and Thevelein JM (2002) Molecular mechanisms controlling the localisation of protein kinase A. Curr Genet 41(4):199-207 PMID:12172960
    • SGD Paper
    • DOI full text
    • PubMed
  • Rolland F, et al. (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2(2):183-201 PMID:12702307
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanghe A, et al. (2002) Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68(12):5981-9 PMID:12450819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teunissen A, et al. (2002) Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl Environ Microbiol 68(10):4780-7 PMID:12324320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Dijck P, et al. (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70(4):1772-82 PMID:11895938
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Dijck P, et al. (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem J 366(Pt 1):63-71 PMID:11978181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zabrocki P, et al. (2002) The Saccharomyces cerevisiae type 2A protein phosphatase Pph22p is biochemically different from mammalian PP2A. Eur J Biochem 269(14):3372-82 PMID:12135475
    • SGD Paper
    • DOI full text
    • PubMed
  • Zabrocki P, et al. (2002) Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Mol Microbiol 43(4):835-42 PMID:11929536
    • SGD Paper
    • DOI full text
    • PubMed
  • Bergsma JC, et al. (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(1,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359(Pt 3):517-23 PMID:11672425
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brown AJ, et al. (2001) Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations. EMBO J 20(12):3177-86 PMID:11406594
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rep M, et al. (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40(5):1067-83 PMID:11401713
    • SGD Paper
    • DOI full text
    • PubMed
  • Rolland F, et al. (2001) The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1(1):33-45 PMID:12702461
    • SGD Paper
    • DOI full text
    • PubMed
  • Rolland F, et al. (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26(5):310-7 PMID:11343924
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugajska E, et al. (2001) Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae. Mol Microbiol 40(4):1020-6 PMID:11401708
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Hoof C, et al. (2001) The Saccharomyces cerevisiae phosphotyrosyl phosphatase activator proteins are required for a subset of the functions disrupted by protein phosphatase 2A mutations. Exp Cell Res 264(2):372-87 PMID:11262194
    • SGD Paper
    • DOI full text
    • PubMed
  • Versele M and Thevelein JM (2001) Lre1 affects chitinase expression, trehalose accumulation and heat resistance through inhibition of the Cbk1 protein kinase in Saccharomyces cerevisiae. Mol Microbiol 41(6):1311-26 PMID:11580836
    • SGD Paper
    • DOI full text
    • PubMed
  • Wera S, et al. (2001) Phosphoinositides in yeast: genetically tractable signalling. FEMS Yeast Res 1(1):9-13 PMID:12702458
    • SGD Paper
    • DOI full text
    • PubMed
  • Wysocki R, et al. (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391-401 PMID:11442837
    • SGD Paper
    • DOI full text
    • PubMed
  • van Vaeck C, et al. (2001) Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochem J 353(Pt 1):157-162 PMID:11115409
    • SGD Paper
    • PMC full text
    • PubMed
  • Bonini BM, et al. (2000) Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochem J 350 Pt 1(Pt 1):261-8 PMID:10926852
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dumortier F, et al. (2000) A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K176M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. Int J Food Microbiol 55(1-3):103-7 PMID:10791726
    • SGD Paper
    • DOI full text
    • PubMed
  • Eliasson A, et al. (2000) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(4):376-82 PMID:10803891
    • SGD Paper
    • DOI full text
    • PubMed
  • Noubhani A, et al. (2000) Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267(14):4566-76 PMID:10880982
    • SGD Paper
    • DOI full text
    • PubMed
  • Rep M, et al. (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275(12):8290-300 PMID:10722658
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Rolland F, et al. (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38(2):348-58 PMID:11069660
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamás MJ, et al. (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472(1):159-65 PMID:10781825
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanghe A, et al. (2000) Identification of genes responsible for improved cryoresistance in fermenting yeast cells. Int J Food Microbiol 55(1-3):259-62 PMID:10791754
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM, et al. (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26(9-10):819-825 PMID:10862891
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Dijck P, et al. (2000) Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55(1-3):187-92 PMID:10791742
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Dijck P, et al. (2000) A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. J Mol Microbiol Biotechnol 2(4):521-30 PMID:11075928
    • SGD Paper
    • PubMed
  • Van Hoof C, et al. (2000) The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle. J Mol Biol 302(1):103-20 PMID:10964564
    • SGD Paper
    • DOI full text
    • PubMed
  • Zähringer H, et al. (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35(2):397-406 PMID:10652100
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S, et al. (1999) Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology (Reading) 145 ( Pt 3):703-714 PMID:10217505
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraakman L, et al. (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32(5):1002-12 PMID:10361302
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraakman LS, et al. (1999) Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 343 Pt 1(Pt 1):159-68 PMID:10493925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ma P, et al. (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10(1):91-104 PMID:9880329
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ma P, et al. (1999) Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Yeast 15(11):1097-109 PMID:10455233
    • SGD Paper
    • DOI full text
    • PubMed
  • Rep M, et al. (1999) Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (Reading) 145 ( Pt 3):715-727 PMID:10217506
    • SGD Paper
    • DOI full text
    • PubMed
  • Rep M, et al. (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19(8):5474-85 PMID:10409737
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tamás MJ, et al. (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087-104 PMID:10096077
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM and de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33(5):904-18 PMID:10476026
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanhalewyn M, et al. (1999) A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Mol Microbiol 33(2):363-76 PMID:10411752
    • SGD Paper
    • DOI full text
    • PubMed
  • Versele M, et al. (1999) A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18(20):5577-91 PMID:10523302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wera S, et al. (1999) Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J 343 Pt 3(Pt 3):621-6 PMID:10527941
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zentella R, et al. (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119(4):1473-82 PMID:10198107
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bell W, et al. (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273(50):33311-9 PMID:9837904
    • SGD Paper
    • DOI full text
    • PubMed
  • Coccetti P, et al. (1998) The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochim Biophys Acta 1405(1-3):147-54 PMID:9784626
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17(12):3326-41 PMID:9628870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ernandes JR, et al. (1998) During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Yeast 14(3):255-69 PMID:9580251
    • SGD Paper
    • DOI full text
    • PubMed
  • Amaral FC, et al. (1997) Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol 167(4):202-8 PMID:9075620
    • SGD Paper
    • DOI full text
    • PubMed
  • Ansell R, et al. (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16(9):2179-87 PMID:9171333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crauwels M, et al. (1997) Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae. Yeast 13(10):973-84 PMID:9271111
    • SGD Paper
    • DOI full text
    • PubMed
  • Crauwels M, et al. (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology (Reading) 143 ( Pt 8):2627-2637 PMID:9274016
    • SGD Paper
    • DOI full text
    • PubMed
  • Ferreira JC, et al. (1997) Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim Biophys Acta 1335(1-2):40-50 PMID:9133641
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma P, et al. (1997) The lag phase rather than the exponential-growth phase on glucose is associated with a higher cAMP level in wild-type and cAPK-attenuated strains of the yeast Saccharomyces cerevisiae. Microbiology (Reading) 143 ( Pt 11):3451-3459 PMID:9387223
    • SGD Paper
    • DOI full text
    • PubMed
  • Reinders A, et al. (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24(4):687-95 PMID:9194697
    • SGD Paper
    • DOI full text
    • PubMed
  • Wanke V, et al. (1997) Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway. FEBS Lett 402(2-3):251-5 PMID:9037205
    • SGD Paper
    • DOI full text
    • PubMed
  • Wera S, et al. (1997) Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae. FEBS Lett 420(2-3):147-50 PMID:9459299
    • SGD Paper
    • DOI full text
    • PubMed
  • De Winde JH, et al. (1996) Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241(2):633-43 PMID:8917466
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S, et al. (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20(5):981-91 PMID:8809751
    • SGD Paper
    • DOI full text
    • PubMed
  • Pernambuco MB, et al. (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology (Reading) 142 ( Pt 7):1775-82 PMID:8757741
    • SGD Paper
    • DOI full text
    • PubMed
  • Winderickx J, et al. (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252(4):470-82 PMID:8879249
    • SGD Paper
    • DOI full text
    • PubMed
  • Dumortier F, et al. (1995) Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Microbiology (Reading) 141 ( Pt 7):1559-66 PMID:7551024
    • SGD Paper
    • DOI full text
    • PubMed
  • Luyten K, et al. (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14(7):1360-71 PMID:7729414
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neves MJ, et al. (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27(2):110-22 PMID:7788713
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM and Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20(1):3-10 PMID:7878741
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Dijck P, et al. (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61(1):109-15 PMID:7887593
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Albertyn J, et al. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135-44 PMID:8196651
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brandão RL, et al. (1994) Possible involvement of a phosphatidylinositol-type signaling pathway in glucose-induced activation of plasma membrane H(+)-ATPase and cellular proton extrusion in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1223(1):117-24 PMID:8061044
    • SGD Paper
    • DOI full text
    • PubMed
  • Durnez P, et al. (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10(8):1049-64 PMID:7992505
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S, et al. (1994) The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation. Curr Genet 26(4):295-301 PMID:7882422
    • SGD Paper
    • DOI full text
    • PubMed
  • Luyten K, et al. (1994) The FPS1 gene product functions as a glycerol facilitator in the yeast Saccharomyces cerevisiae. Folia Microbiol (Praha) 39(6):534-6 PMID:8550015
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10(13):1753-90 PMID:7747517
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S, et al. (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23(4):281-9 PMID:8467527
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraakman LS, et al. (1993) Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. Mol Gen Genet 239(1-2):196-204 PMID:8389977
    • SGD Paper
    • DOI full text
    • PubMed
  • Luyten K, et al. (1993) Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur J Biochem 217(2):701-13 PMID:8223613
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirimburegama K, et al. (1992) Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138(10):2035-43 PMID:1336029
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S and Thevelein JM (1992) The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae. Gene 120(1):43-9 PMID:1398122
    • SGD Paper
    • DOI full text
    • PubMed
  • Hohmann S, et al. (1992) Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. J Bacteriol 174(12):4183-8 PMID:1597433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 62(1-2):109-30 PMID:1444331
    • SGD Paper
    • DOI full text
    • PubMed
  • dos Passos JB, et al. (1992) Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim Biophys Acta 1136(1):57-67 PMID:1322708
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5(6):1301-7 PMID:1664904
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Aelst L, et al. (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J 10(8):2095-104 PMID:1648479
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Aelst L, et al. (1991) Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137(2):341-9 PMID:1849965
    • SGD Paper
    • DOI full text
    • PubMed
  • Argüelles JC, et al. (1990) Absence of glucose-induced cAMP signaling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible proteins. Arch Microbiol 154(2):199-205 PMID:2169717
    • SGD Paper
    • DOI full text
    • PubMed
  • Mbonyi K, et al. (1990) Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase. Mol Cell Biol 10(9):4518-23 PMID:2201893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Aelst L, et al. (1990) The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur J Biochem 193(3):675-80 PMID:2174363
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM, et al. (1989) The glucose-induced CDC25- and RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. Yeast 5 Spec No:S421-5 PMID:2546336
    • SGD Paper
    • PubMed
  • Beullens M, et al. (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172(1):227-31 PMID:2831059
    • SGD Paper
    • DOI full text
    • PubMed
  • Mbonyi K and Thevelein JM (1988) The high-affinity glucose uptake system is not required for induction of the RAS-mediated cAMP signal by glucose in cells of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 971(2):223-6 PMID:2844289
    • SGD Paper
    • DOI full text
    • PubMed
  • Mbonyi K, et al. (1988) Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8(8):3051-7 PMID:2850478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thevelein JM, et al. (1987) Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH. J Gen Microbiol 133(8):2197-205 PMID:2832519
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM, et al. (1987) Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds. J Gen Microbiol 133(8):2191-6 PMID:2832518
    • SGD Paper
    • DOI full text
    • PubMed
  • Thevelein JM and Beullens M (1985) Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J Gen Microbiol 131(12):3199-209 PMID:3007655
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top