AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Penttilä M
  • References

Author: Penttilä M


References 85 references


No citations for this author.

Download References (.nbib)

  • Nguyen A, et al. (2025) Enhancing Chitin Production as a Fermentation Byproduct through a Genetic Toolbox That Activates the Cell Wall Integrity Response. ACS Synth Biol 14(1):113-128 PMID:39757911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toivari M, et al. (2024) Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae. Biotechnol Lett 46(1):69-83 PMID:38064042
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kakko N, et al. (2023) Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae. ACS Synth Biol 12(4):1021-1033 PMID:36976676
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sabzevari M, et al. (2022) Strain design optimization using reinforcement learning. PLoS Comput Biol 18(6):e1010177 PMID:35658018
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ylinen A, et al. (2022) Control of D-lactic acid content in P(LA-3HB) copolymer in the yeast Saccharomyces cerevisiae using a synthetic gene expression system. Metab Eng Commun 14:e00199 PMID:35571351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ylinen A, et al. (2022) PHB production from cellobiose with Saccharomyces cerevisiae. Microb Cell Fact 21(1):124 PMID:35729556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ylinen A, et al. (2021) Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 48(5-6) PMID:33899921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Ruijter JC, et al. (2020) The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 20(3) PMID:32310262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuivanen J, et al. (2018) A High-throughput workflow for CRISPR/Cas9 mediated combinatorial promoter replacements and phenotype characterization in yeast. Biotechnol J e1700593 PMID:29729128
    • SGD Paper
    • DOI full text
    • PubMed
  • Rantasalo A, et al. (2018) Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae. ACS Synth Biol 7(6):1573-1587 PMID:29750501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rantasalo A, et al. (2018) A universal gene expression system for fungi. Nucleic Acids Res 46(18):e111 PMID:29924368
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ribas D, et al. (2017) Yeast as a tool to express sugar acid transporters with biotechnological interest. FEMS Yeast Res 17(2) PMID:28087674
    • SGD Paper
    • DOI full text
    • PubMed
  • Salusjärvi L, et al. (2017) Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(22):8151-8163 PMID:29038973
    • SGD Paper
    • DOI full text
    • PubMed
  • Alff-Tuomala S, et al. (2016) Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 100(2):969-85 PMID:26454869
    • SGD Paper
    • DOI full text
    • PubMed
  • Kludas J, et al. (2016) Machine Learning of Protein Interactions in Fungal Secretory Pathways. PLoS One 11(7):e0159302 PMID:27441920
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rantasalo A, et al. (2016) Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae. PLoS One 11(2):e0148320 PMID:26901642
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richard P, et al. (2015) Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae. AMB Express 5:12 PMID:25852989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Turkia H, et al. (2015) Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation. Talanta 131:366-71 PMID:25281116
    • SGD Paper
    • DOI full text
    • PubMed
  • Aguiar TQ, et al. (2014) Molecular and functional characterization of an invertase secreted by Ashbya gossypii. Mol Biotechnol 56(6):524-34 PMID:24452331
    • SGD Paper
    • DOI full text
    • PubMed
  • Aguiar TQ, et al. (2014) Investigation of protein secretion and secretion stress in Ashbya gossypii. BMC Genomics 15(1):1137 PMID:25523110
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lindfors E, et al. (2014) Integration of transcription and flux data reveals molecular paths associated with differences in oxygen-dependent phenotypes of Saccharomyces cerevisiae. BMC Syst Biol 8:16 PMID:24528924
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mojzita D, et al. (2014) Transcriptome of Saccharomyces cerevisiae during production of D-xylonate. BMC Genomics 15(1):763 PMID:25192596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nygård Y, et al. (2014) The diverse role of Pdr12 in resistance to weak organic acids. Yeast 31(6):219-32 PMID:24691985
    • SGD Paper
    • DOI full text
    • PubMed
  • Pitkänen E, et al. (2014) Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol 10(2):e1003465 PMID:24516375
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aguiar TQ, et al. (2013) Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway. Carbohydr Res 381:19-27 PMID:24056010
    • SGD Paper
    • DOI full text
    • PubMed
  • DiCarlo JE, et al. (2013) Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol 2(12):741-9 PMID:24160921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ribeiro O, et al. (2013) Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered 4(5):322-31 PMID:23644277
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Turkia H, et al. (2013) Capillary electrophoresis for the monitoring of phenolic compounds in bioprocesses. J Chromatogr A 1278:175-80 PMID:23340436
    • SGD Paper
    • DOI full text
    • PubMed
  • Valkonen M, et al. (2013) Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry. Appl Environ Microbiol 79(23):7179-87 PMID:24038689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zdraljevic S, et al. (2013) Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production. Appl Environ Microbiol 79(24):7569-82 PMID:24038690
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jouhten P, et al. (2012) Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. FEBS J 279(18):3338-54 PMID:22672422
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari M, et al. (2012) Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metab Eng 14(4):427-36 PMID:22709678
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari MH, et al. (2012) Microbial D-xylonate production. Appl Microbiol Biotechnol 96(1):1-8 PMID:22875400
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ilmén M, et al. (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30 PMID:21910902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rintala E, et al. (2011) Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS 15(7-8):461-76 PMID:21348598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Verho R, et al. (2011) Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora. Appl Biochem Biotechnol 164(5):604-11 PMID:21253888
    • SGD Paper
    • DOI full text
    • PubMed
  • Canelas AB, et al. (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145 PMID:21266995
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari MH, et al. (2010) Saccharomyces cerevisiae engineered to produce D-xylonate. Appl Microbiol Biotechnol 88(3):751-60 PMID:20680264
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari MH, et al. (2010) Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Appl Microbiol Biotechnol 85(3):731-9 PMID:19711072
    • SGD Paper
    • DOI full text
    • PubMed
  • Rintala E, et al. (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461 PMID:19804647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Herrgård MJ, et al. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155-60 PMID:18846089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jouhten P, et al. (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst Biol 2:60 PMID:18613954
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Penttilä M and Nielsen J (2008) Yeast systems biology. FEMS Yeast Res 8(1):121 PMID:18215226
    • SGD Paper
    • DOI full text
    • PubMed
  • Rintala E, et al. (2008) Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol 8:53 PMID:18373847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salusjärvi L, et al. (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18 PMID:18533012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wiebe MG, et al. (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8(1):140-54 PMID:17425669
    • SGD Paper
    • DOI full text
    • PubMed
  • Gasser B, et al. (2007) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 8:179 PMID:17578563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rintala E, et al. (2007) The ORF YNL274c (GOR1) codes for glyoxylate reductase in Saccharomyces cerevisiae. Yeast 24(2):129-36 PMID:17173333
    • SGD Paper
    • DOI full text
    • PubMed
  • Saloheimo A, et al. (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74(5):1041-52 PMID:17180689
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari MH, et al. (2007) Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl Environ Microbiol 73(17):5471-6 PMID:17630301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arvas M, et al. (2006) Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7:32 PMID:16504068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salusjärvi L, et al. (2006) Transcription analysis of recombinant saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128(3):237-61 PMID:16632884
    • SGD Paper
    • DOI full text
    • PubMed
  • Pitkänen JP, et al. (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67(6):827-37 PMID:15630585
    • SGD Paper
    • DOI full text
    • PubMed
  • Saloheimo M, et al. (2004) Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol 70(1):459-67 PMID:14711675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toivari MH, et al. (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70(6):3681-6 PMID:15184173
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valkonen M, et al. (2004) The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics 272(4):443-51 PMID:15480788
    • SGD Paper
    • DOI full text
    • PubMed
  • Pitkänen JP, et al. (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5(1):16-31 PMID:12749841
    • SGD Paper
    • DOI full text
    • PubMed
  • Richard P, et al. (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3(2):185-9 PMID:12702451
    • SGD Paper
    • DOI full text
    • PubMed
  • Saloheimo M, et al. (2003) Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47(4):1149-61 PMID:12581366
    • SGD Paper
    • DOI full text
    • PubMed
  • Salusjärvi L, et al. (2003) Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20(4):295-314 PMID:12627397
    • SGD Paper
    • DOI full text
    • PubMed
  • Valkonen M, et al. (2003) Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2065-72 PMID:12676684
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Verho R, et al. (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892-7 PMID:14532041
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Domingues L, et al. (2002) Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger beta-galactosidase. Appl Microbiol Biotechnol 58(5):645-50 PMID:11956748
    • SGD Paper
    • DOI full text
    • PubMed
  • Kivioja T, et al. (2002) Assigning probes into a small number of pools separable by electrophoresis. Bioinformatics 18 Suppl 1:S199-206 PMID:12169548
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakari-Setälä T, et al. (2002) Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization. Appl Environ Microbiol 68(7):3385-91 PMID:12089019
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vasara T, et al. (2002) Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim Biophys Acta 1590(1-3):27-40 PMID:12063166
    • SGD Paper
    • DOI full text
    • PubMed
  • Verho R, et al. (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41(46):13833-8 PMID:12427047
    • SGD Paper
    • DOI full text
    • PubMed
  • Poutanen M, et al. (2001) Use of matrix-assisted laser desorption/ionization time-of-flight mass mapping and nanospray liquid chromatography/electrospray ionization tandem mass spectrometry sequence tag analysis for high sensitivity identification of yeast proteins separated by two-dimensional gel electrophoresis. Rapid Commun Mass Spectrom 15(18):1685-92 PMID:11555867
    • SGD Paper
    • DOI full text
    • PubMed
  • Toivari MH, et al. (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3(3):236-49 PMID:11461146
    • SGD Paper
    • DOI full text
    • PubMed
  • Vasara T, et al. (2001) Interactions of the Trichoderma reesei rho3 with the secretory pathway in yeast and T. reesei. Mol Microbiol 42(5):1349-61 PMID:11886564
    • SGD Paper
    • DOI full text
    • PubMed
  • Vasara T, et al. (2001) Trichoderma reesei rho3 a homologue of yeast RH03 suppresses the growth defect of yeast sec15-1 mutation. Curr Genet 40(2):119-27 PMID:11680821
    • SGD Paper
    • DOI full text
    • PubMed
  • Aristidou A and Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187-98 PMID:10753763
    • SGD Paper
    • DOI full text
    • PubMed
  • Kruszewska JS, et al. (2000) Dolichol phosphate mannose synthase from the filamentous fungus Trichoderma reesei belongs to the human and Schizosaccharomyces pombe class of the enzyme. Glycobiology 10(10):983-91 PMID:11030744
    • SGD Paper
    • DOI full text
    • PubMed
  • Richard P, et al. (2000) The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 190(1):39-43 PMID:10981687
    • SGD Paper
    • DOI full text
    • PubMed
  • Richard P, et al. (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457(1):135-8 PMID:10486580
    • SGD Paper
    • DOI full text
    • PubMed
  • Teleman A, et al. (1999) Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Anal Biochem 272(1):71-9 PMID:10405295
    • SGD Paper
    • DOI full text
    • PubMed
  • Kruszewska JS, et al. (1998) Isolation of a Trichoderma reesei cDNA encoding GTP: a-D-mannose-1-phosphate guanyltransferase involved in early steps of protein glycosylation. Curr Genet 33(6):445-50 PMID:9644208
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang T, et al. (1998) Isolation and identification of xylitol dehydrogenase gene from Trichoderma reesei. Chin J Biotechnol 14(3):179-85 PMID:10503078
    • SGD Paper
    • PubMed
  • Veldhuisen G, et al. (1997) Isolation and analysis of functional homologues of the secretion-related SAR1 gene of Saccharomyces cerevisiae from Aspergillus niger and Trichoderma reesei. Mol Gen Genet 256(4):446-55 PMID:9393442
    • SGD Paper
    • DOI full text
    • PubMed
  • Ilmén M, et al. (1996) Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet 253(3):303-14 PMID:9003317
    • SGD Paper
    • DOI full text
    • PubMed
  • Onnela ML, et al. (1996) Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyl non-producing brewer's yeast. J Biotechnol 49(1-3):101-9 PMID:8879166
    • SGD Paper
    • DOI full text
    • PubMed
  • Walfridsson M, et al. (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61(12):4184-90 PMID:8534086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watari J, et al. (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10(2):211-25 PMID:8203162
    • SGD Paper
    • DOI full text
    • PubMed
  • Vanhanen S, et al. (1991) Promoter structure and expression of the 3-phosphoglycerate kinase-encoding gene (pgk1) of Trichoderma reesei. Gene 106(1):129-33 PMID:1937034
    • SGD Paper
    • DOI full text
    • PubMed
  • Suihko ML, et al. (1990) Recombinant brewer's yeast strains suitable for accelerated brewing. J Biotechnol 14(3-4):285-300 PMID:1366907
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top