AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Struhl K
  • References

Author: Struhl K


References 182 references


No citations for this author.

Download References (.nbib)

  • Geisberg JV, et al. (2024) Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 121(21):e2405827121 PMID:38748572
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2024) Location of polyadenylation sites within 3' untranslated regions is linked to biological function in yeast. Genetics 228(4) PMID:39383179
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2023) Condition-specific 3' mRNA isoform half-lives and stability elements in yeast. Proc Natl Acad Sci U S A 120(18):e2301117120 PMID:37094136
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gvozdenov Z, et al. (2023) Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Mol Cell 83(11):1786-1797.e5 PMID:37137302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khitun A, et al. (2023) Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs. J Biol Chem 299(11):105289 PMID:37748648
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2022) Nucleotide-level linkage of transcriptional elongation and polyadenylation. Elife 11 PMID:36421680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lui KH, et al. (2022) 3' Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles. Mol Cell Biol 42(9):e0024422 PMID:35972270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (2022) A compensatory link between cleavage/polyadenylation and mRNA turnover regulates steady-state mRNA levels in yeast. Proc Natl Acad Sci U S A 119(4) PMID:35058367
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petrenko N and Struhl K (2021) Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Elife 10 PMID:34515029
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2020) The transcriptional elongation rate regulates alternative polyadenylation in yeast. Elife 9 PMID:32845240
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petrenko N, et al. (2019) Requirements for RNA polymerase II preinitiation complex formation in vivo. Elife 8 PMID:30681409
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (2018) Extensive Structural Differences of Closely Related 3' mRNA Isoforms: Links to Pab1 Binding and mRNA Stability. Mol Cell 72(5):849-861.e6 PMID:30318446
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin Y, et al. (2017) The Ground State and Evolution of Promoter Region Directionality. Cell 170(5):889-898.e10 PMID:28803729
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petrenko N, et al. (2017) Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo. Elife 6 PMID:28699889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petrenko N, et al. (2016) Mediator Undergoes a Compositional Change during Transcriptional Activation. Mol Cell 64(3):443-454 PMID:27773675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2014) Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156(4):812-24 PMID:24529382
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (2014) Secondary structures involving the poly(A) tail and other 3' sequences are major determinants of mRNA isoform stability in yeast. Microb Cell 1(4):137-139 PMID:25279376
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (2013) Species-specific factors mediate extensive heterogeneity of mRNA 3' ends in yeasts. Proc Natl Acad Sci U S A 110(27):11073-8 PMID:23776204
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hughes AL, et al. (2012) A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 48(1):5-15 PMID:22885008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yuan CC, et al. (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1(2):83-90 PMID:22720264
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Esberg A, et al. (2011) Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One 6(6):e20829 PMID:21695216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Katan-Khaykovich Y and Struhl K (2011) Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc Natl Acad Sci U S A 108(4):1296-301 PMID:21220302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tirosh I, et al. (2011) Extensive divergence of yeast stress responses through transitions between induced and constitutive activation. Proc Natl Acad Sci U S A 108(40):16693-8 PMID:21930916
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong KH and Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25(23):2525-39 PMID:22156212
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan X, et al. (2010) Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3'-end formation. Proc Natl Acad Sci U S A 107(42):17945-50 PMID:20921369
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Locke G, et al. (2010) High-throughput sequencing reveals a simple model of nucleosome energetics. Proc Natl Acad Sci U S A 107(49):20998-1003 PMID:21084631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2010) Evidence against a genomic code for nucleosome positioning. Reply to "Nucleosome sequence preferences influence in vivo nucleosome organization.". Nat Struct Mol Biol 17(8):920-3 PMID:20683474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Auerbach RK, et al. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106(35):14926-31 PMID:19706456
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan X and Struhl K (2009) Where does mediator bind in vivo? PLoS One 4(4):e5029 PMID:19343176
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16(8):847-52 PMID:19620965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan X, et al. (2008) Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments. Nucleic Acids Res 36(19):e125 PMID:18765474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z and Struhl K (2008) Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast. Yeast 25(4):287-92 PMID:18338317
    • SGD Paper
    • DOI full text
    • PubMed
  • Thakur JK, et al. (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452(7187):604-9 PMID:18385733
    • SGD Paper
    • DOI full text
    • PubMed
  • Peckham HE, et al. (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17(8):1170-7 PMID:17620451
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwabish MA and Struhl K (2007) The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 27(20):6987-95 PMID:17709398
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14(2):103-5 PMID:17277804
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan X, et al. (2006) Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 13(2):117-20 PMID:16429153
    • SGD Paper
    • DOI full text
    • PubMed
  • Hall DB, et al. (2006) An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 26(9):3672-9 PMID:16612005
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pascual-Ahuir A, et al. (2006) Genome-wide location analysis of the stress-activated MAP kinase Hog1 in yeast. Methods 40(3):272-8 PMID:16884916
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23(2):241-50 PMID:16857590
    • SGD Paper
    • DOI full text
    • PubMed
  • Schwabish MA and Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22(3):415-22 PMID:16678113
    • SGD Paper
    • DOI full text
    • PubMed
  • Joshi AA and Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971-8 PMID:16364921
    • SGD Paper
    • DOI full text
    • PubMed
  • Katan-Khaykovich Y and Struhl K (2005) Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J 24(12):2138-49 PMID:15920479
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Mason PB and Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17(6):831-40 PMID:15780939
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (2005) Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot Cell 4(8):1343-52 PMID:16087739
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sekinger EA, et al. (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18(6):735-48 PMID:15949447
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (2005) personal communication
    • SGD Paper
  • Aparicio O, et al. (2004) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol Chapter 17:Unit 17.7 PMID:18228445
    • SGD Paper
    • DOI full text
    • PubMed
  • Bourbon HM, et al. (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14(5):553-7 PMID:15175151
    • SGD Paper
    • DOI full text
    • PubMed
  • Geisberg JV and Struhl K (2004) Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res 32(19):e151 PMID:15520460
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV and Struhl K (2004) Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol Cell 14(4):479-89 PMID:15149597
    • SGD Paper
    • DOI full text
    • PubMed
  • Moqtaderi Z and Struhl K (2004) Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol 24(10):4118-27 PMID:15121834
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Proft M and Struhl K (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118(3):351-61 PMID:15294160
    • SGD Paper
    • DOI full text
    • PubMed
  • Reid JL, et al. (2004) Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol Cell Biol 24(2):757-64 PMID:14701747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwabish MA and Struhl K (2004) Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 24(23):10111-7 PMID:15542822
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wade JT, et al. (2004) The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432(7020):1054-8 PMID:15616568
    • SGD Paper
    • DOI full text
    • PubMed
  • Mason PB and Struhl K (2003) The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23(22):8323-33 PMID:14585989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng HH, et al. (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci U S A 100(4):1820-5 PMID:12574507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng HH, et al. (2003) The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278(36):33625-8 PMID:12876293
    • SGD Paper
    • DOI full text
    • PubMed
  • Ng HH, et al. (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709-19 PMID:12667453
    • SGD Paper
    • DOI full text
    • PubMed
  • Deckert J and Struhl K (2002) Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol Cell Biol 22(18):6458-70 PMID:12192044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Q, et al. (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052-8 PMID:12123582
    • SGD Paper
    • DOI full text
    • PubMed
  • Geisberg JV, et al. (2002) Mot1 associates with transcriptionally active promoters and inhibits association of NC2 in Saccharomyces cerevisiae. Mol Cell Biol 22(23):8122-34 PMID:12417716
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hall DB and Struhl K (2002) The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 277(48):46043-50 PMID:12297514
    • SGD Paper
    • DOI full text
    • PubMed
  • Mencía M, et al. (2002) Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 9(4):823-33 PMID:11983173
    • SGD Paper
    • DOI full text
    • PubMed
  • Ng HH, et al. (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16(12):1518-27 PMID:12080090
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng HH, et al. (2002) Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev 16(7):806-19 PMID:11937489
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng HH, et al. (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277(38):34655-7 PMID:12167634
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M and Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9(6):1307-17 PMID:12086627
    • SGD Paper
    • DOI full text
    • PubMed
  • Strässer K, et al. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417(6886):304-8 PMID:11979277
    • SGD Paper
    • DOI full text
    • PubMed
  • Deckert J and Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21(8):2726-35 PMID:11283252
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV, et al. (2001) Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo. Mol Cell Biol 21(8):2736-42 PMID:11283253
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Lee M and Struhl K (2001) Multiple functions of the nonconserved N-terminal domain of yeast TATA-binding protein. Genetics 158(1):87-93 PMID:11333220
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mencía M and Struhl K (2001) Region of yeast TAF 130 required for TFIID to associate with promoters. Mol Cell Biol 21(4):1145-54 PMID:11158301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garcia-Gimeno MA and Struhl K (2000) Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 20(12):4340-9 PMID:10825197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geisberg JV and Struhl K (2000) TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 20(5):1478-88 PMID:10669725
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuo MH, et al. (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 6(6):1309-20 PMID:11163205
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuras L, et al. (2000) TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288(5469):1244-8 PMID:10818000
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee M, et al. (2000) Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast. Genetics 155(4):1535-42 PMID:10924455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mai X, et al. (2000) Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements. Mol Cell Biol 20(18):6668-76 PMID:10958664
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reid JL, et al. (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6(6):1297-307 PMID:11163204
    • SGD Paper
    • DOI full text
    • PubMed
  • Stargell LA, et al. (2000) TFIIA has activator-dependent and core promoter functions in vivo. J Biol Chem 275(17):12374-80 PMID:10777519
    • SGD Paper
    • DOI full text
    • PubMed
  • Chou S, et al. (1999) Transcriptional activation in yeast cells lacking transcription factor IIA. Genetics 153(4):1573-81 PMID:10581267
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaudreau L, et al. (1999) Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences. Proc Natl Acad Sci U S A 96(6):2668-73 PMID:10077568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keaveney M and Struhl K (1999) Incorporation of Drosophila TAF110 into the yeast TFIID complex does not permit the Sp1 glutamine-rich activation domain to function in vivo. Genes Cells 4(4):197-203 PMID:10336691
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuras L and Struhl K (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399(6736):609-13 PMID:10376605
    • SGD Paper
    • DOI full text
    • PubMed
  • Ranallo RT, et al. (1999) A TATA-binding protein mutant defective for TFIID complex formation in vivo. Mol Cell Biol 19(6):3951-7 PMID:10330135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Benson JD, et al. (1998) Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes. EMBO J 17(22):6714-22 PMID:9822614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kadosh D and Struhl K (1998) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12(6):797-805 PMID:9512514
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kadosh D and Struhl K (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18(9):5121-7 PMID:9710596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keaveney M and Struhl K (1998) Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol Cell 1(6):917-24 PMID:9660975
    • SGD Paper
    • DOI full text
    • PubMed
  • Moqtaderi Z, et al. (1998) The histone H3-like TAF is broadly required for transcription in yeast. Mol Cell 2(5):675-82 PMID:9844639
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599-606 PMID:9499396
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K and Moqtaderi Z (1998) The TAFs in the HAT. Cell 94(1):1-4 PMID:9674419
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K, et al. (1998) Activation and repression mechanisms in yeast. Cold Spring Harb Symp Quant Biol 63:413-21 PMID:10384306
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Heeckeren WJ, et al. (1998) The mating-type proteins of fission yeast induce meiosis by directly activating mei3 transcription. Mol Cell Biol 18(12):7317-26 PMID:9819418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chou S and Struhl K (1997) Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 17(12):6794-802 PMID:9372910
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fernandes L, et al. (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17(12):6982-93 PMID:9372930
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kadosh D and Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89(3):365-71 PMID:9150136
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee M and Struhl K (1997) A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo. Mol Cell Biol 17(3):1336-45 PMID:9032260
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mahadevan S, et al. (1997) Characterisation of 3' end formation of the yeast HIS3 mRNA. Gene 190(1):69-76 PMID:9185851
    • SGD Paper
    • DOI full text
    • PubMed
  • De Rubertis F, et al. (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384(6609):589-91 PMID:8955276
    • SGD Paper
    • DOI full text
    • PubMed
  • Iyer V and Struhl K (1996) Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93(11):5208-12 PMID:8643554
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (1996) Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci U S A 93(25):14654-8 PMID:8962109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (1996) TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383(6596):188-91 PMID:8774887
    • SGD Paper
    • DOI full text
    • PubMed
  • Stargell LA and Struhl K (1996) A new class of activation-defective TATA-binding protein mutants: evidence for two steps of transcriptional activation in vivo. Mol Cell Biol 16(8):4456-64 PMID:8754846
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stargell LA and Struhl K (1996) Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 12(8):311-5 PMID:8783941
    • SGD Paper
    • DOI full text
    • PubMed
  • Chatterjee S and Struhl K (1995) Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374(6525):820-2 PMID:7723828
    • SGD Paper
    • DOI full text
    • PubMed
  • Iyer V and Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14(11):2570-9 PMID:7781610
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Iyer V and Struhl K (1995) Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol Cell Biol 15(12):7059-66 PMID:8524273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee M and Struhl K (1995) Mutations on the DNA-binding surface of TATA-binding protein can specifically impair the response to acidic activators in vivo. Mol Cell Biol 15(10):5461-9 PMID:7565697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stargell LA and Struhl K (1995) The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269(5220):75-8 PMID:7604282
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1995) Yeast transcriptional regulatory mechanisms. Annu Rev Genet 29:651-74 PMID:8825489
    • SGD Paper
    • DOI full text
    • PubMed
  • Tzamarias D and Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9(7):821-31 PMID:7705659
    • SGD Paper
    • DOI full text
    • PubMed
  • Arndt KM, et al. (1994) Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities. Mol Cell Biol 14(6):3719-28 PMID:8196615
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Collart MA and Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8(5):525-37 PMID:7926748
    • SGD Paper
    • DOI full text
    • PubMed
  • Cormack BP, et al. (1994) Conserved and nonconserved functions of the yeast and human TATA-binding proteins. Genes Dev 8(11):1335-43 PMID:7926734
    • SGD Paper
    • DOI full text
    • PubMed
  • Engelberg D, et al. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77(3):381-90 PMID:8181058
    • SGD Paper
    • DOI full text
    • PubMed
  • Klein C and Struhl K (1994) Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266(5183):280-2 PMID:7939664
    • SGD Paper
    • DOI full text
    • PubMed
  • Klein C and Struhl K (1994) Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol Cell Biol 14(3):1920-8 PMID:8114723
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tzamarias D and Struhl K (1994) Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369(6483):758-61 PMID:8008070
    • SGD Paper
    • DOI full text
    • PubMed
  • Collart MA and Struhl K (1993) CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO J 12(1):177-86 PMID:8428577
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cormack BP and Struhl K (1993) Regional codon randomization: defining a TATA-binding protein surface required for RNA polymerase III transcription. Science 262(5131):244-8 PMID:8211143
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim J, et al. (1993) Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc Natl Acad Sci U S A 90(10):4513-7 PMID:8506292
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cormack BP and Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69(4):685-96 PMID:1586947
    • SGD Paper
    • DOI full text
    • PubMed
  • Ellenberger TE, et al. (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71(7):1223-37 PMID:1473154
    • SGD Paper
    • DOI full text
    • PubMed
  • Kelleher RJ, et al. (1992) Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev 6(2):296-303 PMID:1310667
    • SGD Paper
    • DOI full text
    • PubMed
  • Pu WT and Struhl K (1992) Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines: the GCN4-DNA complex. Nucleic Acids Res 20(4):771-5 PMID:1542572
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strubin M and Struhl K (1992) Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68(4):721-30 PMID:1739977
    • SGD Paper
    • DOI full text
    • PubMed
  • Tzamarias D, et al. (1992) Mutations in the bZIP domain of yeast GCN4 that alter DNA-binding specificity. Proc Natl Acad Sci U S A 89(6):2007-11 PMID:1549559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vincent AC and Struhl K (1992) ACR1, a yeast ATF/CREB repressor. Mol Cell Biol 12(12):5394-405 PMID:1448073
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Heeckeren WJ, et al. (1992) Role of the conserved leucines in the leucine zipper dimerization motif of yeast GCN4. Nucleic Acids Res 20(14):3721-4 PMID:1641337
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cormack BP, et al. (1991) Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65(2):341-8 PMID:2015628
    • SGD Paper
    • DOI full text
    • PubMed
  • Oliviero S and Struhl K (1991) Synergistic transcriptional enhancement does not depend on the number of acidic activation domains bound to the promoter. Proc Natl Acad Sci U S A 88(1):224-8 PMID:1898773
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pu WT and Struhl K (1991) Highly conserved residues in the bZIP domain of yeast GCN4 are not essential for DNA binding. Mol Cell Biol 11(10):4918-26 PMID:1922025
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pu WT and Struhl K (1991) The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding. Proc Natl Acad Sci U S A 88(16):6901-5 PMID:1871104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brandl CJ and Struhl K (1990) A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol Cell Biol 10(8):4256-65 PMID:2196450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mahadevan S and Struhl K (1990) Tc, an unusual promoter element required for constitutive transcription of the yeast HIS3 gene. Mol Cell Biol 10(9):4447-55 PMID:2201891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ponticelli AS and Struhl K (1990) Analysis of Saccharomyces cerevisiae his3 transcription in vitro: biochemical support for multiple mechanisms of transcription. Mol Cell Biol 10(6):2832-9 PMID:2188101
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sellers JW, et al. (1990) Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Mol Cell Biol 10(10):5077-86 PMID:2204805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Singer VL, et al. (1990) A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev 4(4):636-45 PMID:2163345
    • SGD Paper
    • DOI full text
    • PubMed
  • Weiss MA, et al. (1990) Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347(6293):575-8 PMID:2145515
    • SGD Paper
    • DOI full text
    • PubMed
  • Wobbe CR and Struhl K (1990) Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol 10(8):3859-67 PMID:2196437
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brandl CJ and Struhl K (1989) Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro. Proc Natl Acad Sci U S A 86(8):2652-6 PMID:2649888
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen W and Struhl K (1989) Yeast upstream activator protein GCN4 can stimulate transcription when its binding site replaces the TATA element. EMBO J 8(1):261-8 PMID:2653813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harbury PA and Struhl K (1989) Functional distinctions between yeast TATA elements. Mol Cell Biol 9(12):5298-304 PMID:2685558
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oliphant AR, et al. (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9(7):2944-9 PMID:2674675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen W and Struhl K (1988) Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A 85(8):2691-5 PMID:3282236
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hill DE and Struhl K (1988) Molecular characterization of GCD1, a yeast gene required for general control of amino acid biosynthesis and cell-cycle initiation. Nucleic Acids Res 16(19):9253-65 PMID:3050897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hope IA, et al. (1988) Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature 333(6174):635-40 PMID:3287180
    • SGD Paper
    • DOI full text
    • PubMed
  • Kanazawa S, et al. (1988) ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8(2):664-73 PMID:3280970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1988) The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast. Nature 332(6165):649-50 PMID:3128739
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K, et al. (1988) Transcriptional activation by yeast GCN4, a functional homolog to the jun oncoprotein. Cold Spring Harb Symp Quant Biol 53 Pt 2:701-9 PMID:3151184
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen W, et al. (1987) Distinguishing between mechanisms of eukaryotic transcriptional activation with bacteriophage T7 RNA polymerase. Cell 50(7):1047-55 PMID:3304661
    • SGD Paper
    • DOI full text
    • PubMed
  • Hope IA and Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6(9):2781-4 PMID:3678204
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1987) The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Cell 50(6):841-6 PMID:3040261
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1987) Effect of deletion and insertion on double-strand-break repair in Saccharomyces cerevisiae. Mol Cell Biol 7(3):1300-3 PMID:3031487
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K and Hill DE (1987) Two related regulatory sequences are required for maximal induction of Saccharomyces cerevisiae his3 transcription. Mol Cell Biol 7(1):104-10 PMID:3031449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hill DE and Struhl K (1986) A rapid method for determining tRNA charging levels in vivo: analysis of yeast mutants defective in the general control of amino acid biosynthesis. Nucleic Acids Res 14(24):10045-51 PMID:3543839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hill DE, et al. (1986) Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234(4775):451-7 PMID:3532321
    • SGD Paper
    • DOI full text
    • PubMed
  • Hope IA and Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46(6):885-94 PMID:3530496
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1986) Yeast HIS3 expression in Escherichia coli depends upon fortuitous homology between eukaryotic and prokaryotic promoter elements. J Mol Biol 191(2):221-9 PMID:3543377
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1986) Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol Cell Biol 6(11):3847-53 PMID:3540601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen W and Struhl K (1985) Yeast mRNA initiation sites are determined primarily by specific sequences, not by the distance from the TATA element. EMBO J 4(12):3273-80 PMID:3912167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hope IA and Struhl K (1985) GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43(1):177-88 PMID:3907851
    • SGD Paper
    • DOI full text
    • PubMed
  • Oettinger MA and Struhl K (1985) Suppressors of Saccharomyces cerevisiae his3 promoter mutations lacking the upstream element. Mol Cell Biol 5(8):1901-9 PMID:3018536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1985) Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A 82(24):8419-23 PMID:3909145
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1985) Negative control at a distance mediates catabolite repression in yeast. Nature 317(6040):822-4 PMID:3903516
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1985) Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res 13(23):8587-601 PMID:3001645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1984) Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc Natl Acad Sci U S A 81(24):7865-9 PMID:6096864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1983) Promoter elements, regulatory elements, and chromatin structure of the yeast his3 gene. Cold Spring Harb Symp Quant Biol 47 Pt 2:901-10 PMID:6305590
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1983) Direct selection for gene replacement events in yeast. Gene 26(2-3):231-41 PMID:6323262
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1982) The yeast his3 promoter contains at least two distinct elements. Proc Natl Acad Sci U S A 79(23):7385-9 PMID:6760196
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K (1982) Regulatory sites for his3 gene expression in yeast. Nature 300(5889):285-6 PMID:6755264
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K (1981) Deletion mapping a eukaryotic promoter. Proc Natl Acad Sci U S A 78(7):4461-5 PMID:7027262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K and Davis RW (1981) Promotor mutants of the yeast his3 gene. J Mol Biol 152(3):553-68 PMID:6173490
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K and Davis RW (1981) Transcription of the his3 gene region in Saccharomyces cerevisiae. J Mol Biol 152(3):535-52 PMID:6173489
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K and Davis RW (1980) A physical, genetic and transcriptional map of the cloned his3 gene region of Saccharomyces cerevisiae. J Mol Biol 136(3):309-32 PMID:6246242
    • SGD Paper
    • DOI full text
    • PubMed
  • Botstein D, et al. (1979) Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8(1):17-24 PMID:395030
    • SGD Paper
    • DOI full text
    • PubMed
  • Stinchcomb DT, et al. (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282(5734):39-43 PMID:388229
    • SGD Paper
    • DOI full text
    • PubMed
  • Struhl K, et al. (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A 76(3):1035-9 PMID:375221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struhl K and Davis RW (1977) Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc Natl Acad Sci U S A 74(12):5255-9 PMID:341150
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top