AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Pérez-Ortín JE
  • References

Author: Pérez-Ortín JE


References 105 references


No citations for this author.

Download References (.nbib)

  • García-Marcelo MJ, et al. (2025) Measurement of rRNA Synthesis and Degradation Rates by 3H-Uracil Labeling in Yeast. Methods Mol Biol 2863:183-204 PMID:39535711
    • SGD Paper
    • DOI full text
    • PubMed
  • Garrido-Godino AI, et al. (2025) Growth rate is related to elongation of RNA polymerase II transcription in Saccharomyces cerevisiae. Biochim Biophys Acta Gene Regul Mech 1868(3):195100 PMID:40494435
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordán-Pla A, et al. (2025) Proper 5'-3' cotranslational mRNA decay in yeast requires import of Xrn1 to the nucleus. PLoS One 20(1):e0308195 PMID:39841709
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maya-Miles D, et al. (2025) Regulation of transcription elongation anticipates alternative gene expression strategies across the cell cycle. PLoS One 20(5):e0317650 PMID:40333925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kelbert M, et al. (2024) The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. Elife 12 PMID:39356734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2024) Influence of cell volume on the gene transcription rate. Biochim Biophys Acta Gene Regul Mech 1867(1):195008 PMID:38246270
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (2024) Comparison of Xrn1 and Rat1 5' → 3' exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay. Yeast 41(7):458-472 PMID:38874348
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez J, et al. (2023) Enhanced gene regulation by cooperation between mRNA decay and gene transcription. Biochim Biophys Acta Gene Regul Mech 1866(2):194910 PMID:36731791
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arnau V, et al. (2022) A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS One 17(9):e0272878 PMID:36048821
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jordán-Pla A and Pérez-Ortín JE (2022) High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq. Methods Mol Biol 2477:57-70 PMID:35524111
    • SGD Paper
    • DOI full text
    • PubMed
  • Romero AM, et al. (2022) Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. Biochim Biophys Acta Gene Regul Mech 1865(2):194800 PMID:35218933
    • SGD Paper
    • DOI full text
    • PubMed
  • Begley V, et al. (2021) Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biol 18(9):1310-1323 PMID:33138675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Forés-Martos J, et al. (2021) A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them. Cells 10(2) PMID:33562654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Martínez J, et al. (2021) Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 18(10):1458-1474 PMID:33258404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Martínez J, et al. (2021) The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA 27(10):1281-1290 PMID:34272303
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garrido-Godino AI, et al. (2021) Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 18(8):1206-1220 PMID:33094674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2021) Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet 17(4):e1009520 PMID:33826644
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Begley V, et al. (2019) The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Res 47(18):9524-9541 PMID:31392315
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blasco-Moreno B, et al. (2019) The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nat Commun 10(1):1298 PMID:30899024
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Calvo O, et al. (2019) The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 47(12):6250-6268 PMID:31006804
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2019) Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability. RNA Biol 16(12):1659-1666 PMID:31418631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Romero AM, et al. (2019) A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. Biochim Biophys Acta Gene Regul Mech 1862(9):194414 PMID:31394264
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Molinero V, et al. (2018) The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally. Epigenetics Chromatin 11(1):13 PMID:29598828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oliete-Calvo P, et al. (2018) A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 19(11) PMID:30249596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Benet M, et al. (2017) Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. Biochim Biophys Acta Gene Regul Mech 1860(7):794-802 PMID:28461260
    • SGD Paper
    • DOI full text
    • PubMed
  • Gutiérrez G, et al. (2017) Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics Chromatin 10(1):58 PMID:29212533
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez-Herreros F, et al. (2017) The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 45(16):9302-9318 PMID:28637236
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mena A, et al. (2017) Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 45(21):12401-12412 PMID:29069448
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miguel A, et al. (2017) Corrigendum to "External conditions inversely change the RNA polymerase II elongation rate and density in yeast" [Biochim. Biophys. Acta 1829/11 (2013) 1248-1255]. Biochim Biophys Acta Gene Regul Mech 1860(2):289 PMID:27875711
    • SGD Paper
    • DOI full text
    • PubMed
  • Chávez S, et al. (2016) The importance of controlling mRNA turnover during cell proliferation. Curr Genet 62(4):701-710 PMID:27007479
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez J, et al. (2016) Growth rate controls mRNA turnover in steady and non-steady states. RNA Biol 13(12):1175-1181 PMID:27648972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Martínez J, et al. (2016) The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Res 44(8):3643-58 PMID:26717982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garrido-Godino AI, et al. (2016) Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. Biochim Biophys Acta 1859(5):731-43 PMID:27001033
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordán-Pla A, et al. (2016) Biotin-Genomic Run-On (Bio-GRO): A High-Resolution Method for the Analysis of Nascent Transcription in Yeast. Methods Mol Biol 1361:125-39 PMID:26483020
    • SGD Paper
    • DOI full text
    • PubMed
  • Li T, et al. (2016) The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. Biochim Biophys Acta 1859(2):405-19 PMID:26775127
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbosa C, et al. (2015) Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 10(4):e0122709 PMID:25884705
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Canadell D, et al. (2015) Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849(6):653-64 PMID:25900709
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordán-Pla A, et al. (2015) Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Res 43(2):787-802 PMID:25550430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Medina DA, et al. (2014) Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front Genet 5:1 PMID:24567736
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garre E, et al. (2013) Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 8(4):e61240 PMID:23620734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haimovich G, et al. (2013) Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 153(5):1000-11 PMID:23706738
    • SGD Paper
    • DOI full text
    • PubMed
  • Miguel A, et al. (2013) External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochim Biophys Acta 1829(11):1248-55 PMID:24103494
    • SGD Paper
    • DOI full text
    • PubMed
  • Nikolaou C, et al. (2013) Topoisomerase II regulates yeast genes with singular chromatin architectures. Nucleic Acids Res 41(20):9243-56 PMID:23935120
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2013) What do you mean by transcription rate?: the conceptual difference between nascent transcription rate and mRNA synthesis rate is essential for the proper understanding of transcriptomic analyses. Bioessays 35(12):1056-62 PMID:24105897
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez J, et al. (2012) The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription 3(1):39-44 PMID:22456320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2012) Genome-wide studies of mRNA synthesis and degradation in eukaryotes. Biochim Biophys Acta 1819(6):604-15 PMID:22182827
    • SGD Paper
    • DOI full text
    • PubMed
  • Castells-Roca L, et al. (2011) Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 6(2):e17272 PMID:21364882
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-López MC, et al. (2011) The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. Genetics 189(4):1235-48 PMID:21954159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Martínez J, et al. (2011) Genomic-wide methods to evaluate transcription rates in yeast. Methods Mol Biol 734:25-44 PMID:21468983
    • SGD Paper
    • DOI full text
    • PubMed
  • Marín-Navarro J, et al. (2011) Global estimation of mRNA stability in yeast. Methods Mol Biol 734:3-23 PMID:21468982
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (2011) Genomic insights into the different layers of gene regulation in yeast. Genet Res Int 2011:989303 PMID:22567375
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2011) A genomic view of mRNA turnover in yeast. C R Biol 334(8-9):647-54 PMID:21819946
    • SGD Paper
    • DOI full text
    • PubMed
  • Bermúdez I, et al. (2010) A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 38(19):e182 PMID:20685815
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pelechano V and Pérez-Ortín JE (2010) There is a steady-state transcriptome in exponentially growing yeast cells. Yeast 27(7):413-22 PMID:20301094
    • SGD Paper
    • DOI full text
    • PubMed
  • Pelechano V, et al. (2010) A complete set of nascent transcription rates for yeast genes. PLoS One 5(11):e15442 PMID:21103382
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodríguez-Gil A, et al. (2010) The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors. Nucleic Acids Res 38(14):4651-64 PMID:20385590
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Belloch C, et al. (2009) Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 75(8):2534-44 PMID:19251887
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pelechano V, et al. (2009) Regulon-specific control of transcription elongation across the yeast genome. PLoS Genet 5(8):e1000614 PMID:19696888
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Romero-Santacreu L, et al. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15(6):1110-20 PMID:19369426
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Grund SE, et al. (2008) The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol 182(5):897-910 PMID:18762579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molina-Navarro MM, et al. (2008) Comprehensive transcriptional analysis of the oxidative response in yeast. J Biol Chem 283(26):17908-18 PMID:18424442
    • SGD Paper
    • DOI full text
    • PubMed
  • Pelechano V and Pérez-Ortín JE (2008) The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast 25(2):85-92 PMID:17914747
    • SGD Paper
    • DOI full text
    • PubMed
  • Solieri L, et al. (2008) Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25(7):485-500 PMID:18615860
    • SGD Paper
    • DOI full text
    • PubMed
  • Cardona F, et al. (2007) A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol 114(1):83-91 PMID:17187885
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez J, et al. (2007) Common gene expression strategies revealed by genome-wide analysis in yeast. Genome Biol 8(10):R222 PMID:17945030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendes-Ferreira A, et al. (2007) Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 73(9):3049-60 PMID:17337556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendes-Ferreira A, et al. (2007) Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl Environ Microbiol 73(16):5363-9 PMID:17601813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE (2007) Genomics of mRNA turnover. Brief Funct Genomic Proteomic 6(4):282-91 PMID:18216027
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (2007) Genomics and gene transcription kinetics in yeast. Trends Genet 23(5):250-7 PMID:17379352
    • SGD Paper
    • DOI full text
    • PubMed
  • Rosaleny LE, et al. (2007) The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biol 8(6):R119 PMID:17584493
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pelechano V, et al. (2006) A genomic study of the inter-ORF distances in Saccharomyces cerevisiae. Yeast 23(9):689-99 PMID:16845687
    • SGD Paper
    • DOI full text
    • PubMed
  • Güldener U, et al. (2005) CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Res 33(Database issue):D364-8 PMID:15608217
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosaleny LE, et al. (2005) Yeast HAT1 and HAT2 deletions have different life-span and transcriptome phenotypes. FEBS Lett 579(19):4063-8 PMID:16023114
    • SGD Paper
    • DOI full text
    • PubMed
  • Alberola TM, et al. (2004) A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. Int Microbiol 7(3):199-206 PMID:15492934
    • SGD Paper
    • PubMed
  • Bellí G, et al. (2004) Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes. J Biol Chem 279(13):12386-95 PMID:14722110
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez J, et al. (2004) Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol Cell 15(2):303-13 PMID:15260981
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Rodríguez-Navarro S, et al. (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1):75-86 PMID:14718168
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Carrasco P, et al. (2003) Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Syst Appl Microbiol 26(3):471-9 PMID:14529191
    • SGD Paper
    • DOI full text
    • PubMed
  • Carro D, et al. (2003) Structural characterization of chromosome I size variants from a natural yeast strain. Yeast 20(2):171-83 PMID:12518320
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12(10):1533-9 PMID:12368245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (2002) DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 98(2-3):227-41 PMID:12141989
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Torrado R, et al. (2002) Study of the first hours of microvinification by the use of osmotic stress-response genes as probes. Syst Appl Microbiol 25(1):153-61 PMID:12086182
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Navarro S, et al. (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19(14):1261-76 PMID:12271461
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Navarro S, et al. (2002) SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast 19(1):43-54 PMID:11754482
    • SGD Paper
    • DOI full text
    • PubMed
  • Hauser NC, et al. (2001) Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2(2):69-79 PMID:18628902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pamblanco M, et al. (2001) Bromodomain factor 1 (Bdf1) protein interacts with histones. FEBS Lett 496(1):31-5 PMID:11343701
    • SGD Paper
    • DOI full text
    • PubMed
  • Puig S and Pérez-Ortín JE (2000) Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast 16(2):139-48 PMID:10641036
    • SGD Paper
    • DOI full text
    • PubMed
  • Puig S and Pérez-Ortín JE (2000) Expression levels and patterns of glycolytic yeast genes during wine fermentation. Syst Appl Microbiol 23(2):300-3 PMID:10930084
    • SGD Paper
    • DOI full text
    • PubMed
  • Puig S, et al. (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66(5):2057-61 PMID:10788381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Helden J, et al. (2000) Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 28(4):1000-10 PMID:10648794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ivorra C, et al. (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64(6):698-708 PMID:10417219
    • SGD Paper
    • DOI full text
    • PubMed
  • Puig S, et al. (1999) Transcriptional and structural study of a region of two convergent overlapping yeast genes. Curr Microbiol 39(6):369-0373 PMID:10525844
    • SGD Paper
    • DOI full text
    • PubMed
  • Puig S, et al. (1999) Stochastic nucleosome positioning in a yeast chromatin region is not dependent on histone H1. Curr Microbiol 39(3):168-72 PMID:10441732
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Navarro S, et al. (1999) Functional analysis of 12 ORFs from Saccharomyces cerevisiae chromosome II. Yeast 15(10B):913-9 PMID:10407271
    • SGD Paper
    • DOI full text
    • PubMed
  • Aranda A, et al. (1998) The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Res 26(20):4588-96 PMID:9753725
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aranda A, et al. (1998) Transcription termination downstream of the Saccharomyces cerevisiae FBP1 [changed from FPB1] poly(A) site does not depend on efficient 3'end processing. RNA 4(3):303-18 PMID:9510332
    • SGD Paper
    • PMC full text
    • PubMed
  • Ruiz-García AB, et al. (1998) HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem 273(20):12599-605 PMID:9575221
    • SGD Paper
    • DOI full text
    • PubMed
  • Aranda A, et al. (1997) Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin. Yeast 13(4):313-26 PMID:9133735
    • SGD Paper
    • DOI full text
    • PubMed
  • del Olmo M and Pérez-Ortín JE (1993) A natural A/T-rich sequence from the yeast FBP1 gene exists as a cruciform in Escherichia coli cells. Plasmid 29(3):222-32 PMID:8356116
    • SGD Paper
    • DOI full text
    • PubMed
  • del Olmo ML, et al. (1993) Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions. Yeast 9(11):1229-40 PMID:8109172
    • SGD Paper
    • DOI full text
    • PubMed
  • Igual JC, et al. (1992) The POT1 gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation. Mol Microbiol 6(14):1867-75 PMID:1354832
    • SGD Paper
    • DOI full text
    • PubMed
  • Matallana E, et al. (1992) Chromatin structure of the yeast SUC2 promoter in regulatory mutants. Mol Gen Genet 231(3):395-400 PMID:1538695
    • SGD Paper
    • DOI full text
    • PubMed
  • Martínez-García JF, et al. (1989) Chromatin structure of the 5' flanking region of the yeast LEU2 gene. Mol Gen Genet 217(2-3):464-70 PMID:10215493
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (1987) Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15(17):6937-56 PMID:2821486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortín JE, et al. (1986) Sliding-end-labelling. A method to avoid artifacts in nucleosome positioning. FEBS Lett 208(1):31-3 PMID:3021537
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top