AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Posas F
  • References

Author: Posas F


References 99 references


No citations for this author.

Download References (.nbib)

  • Nadal-Ribelles M, et al. (2025) Transcriptional heterogeneity shapes stress-adaptive responses in yeast. Nat Commun 16(1):2631 PMID:40097446
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nadal-Ribelles M, et al. (2025) A single-cell resolved genotype-phenotype map using genome-wide genetic and environmental perturbations. Nat Commun 16(1):2645 PMID:40102404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pinheiro S, et al. (2025) Basal association of a transcription factor favors early gene expression. PLoS Genet 21(6):e1011710 PMID:40523030
    • SGD Paper
    • DOI full text
    • PubMed
  • Seisenbacher G, et al. (2025) Redox proteomics reveal a role for peroxiredoxinylation in stress protection. Cell Rep 44(2):115224 PMID:39847483
    • SGD Paper
    • DOI full text
    • PubMed
  • Nadal-Ribelles M, et al. (2024) The rise of single-cell transcriptomics in yeast. Yeast 41(4):158-170 PMID:38403881
    • SGD Paper
    • DOI full text
    • PubMed
  • Mosbacher M, et al. (2023) Positive feedback induces switch between distributive and processive phosphorylation of Hog1. Nat Commun 14(1):2477 PMID:37120434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Picón-Pagès P, et al. (2023) A Genome-Wide Functional Screen Identifies Enhancer and Protective Genes for Amyloid Beta-Peptide Toxicity. Int J Mol Sci 24(2) PMID:36674792
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Latorre P, et al. (2022) Data-driven identification of inherent features of eukaryotic stress-responsive genes. NAR Genom Bioinform 4(1):lqac018 PMID:35265837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ulsamer A, et al. (2022) Regulation of Claspin by the p38 stress-activated protein kinase protects cells from DNA damage. Cell Rep 40(12):111375 PMID:36130506
    • SGD Paper
    • DOI full text
    • PubMed
  • de Nadal E and Posas F (2022) The HOG pathway and the regulation of osmoadaptive responses in yeast. FEMS Yeast Res 22(1) PMID:35254447
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiménez J, et al. (2020) The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 19(17):2105-2118 PMID:32794416
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tognetti S, et al. (2020) Hog1 activation delays mitotic exit via phosphorylation of Net1. Proc Natl Acad Sci U S A 117(16):8924-8933 PMID:32265285
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Viéitez C, et al. (2020) A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Res 48(7):3455-3475 PMID:32064518
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nadal-Ribelles M, et al. (2019) Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations. Nat Microbiol 4(4):683-692 PMID:30718850
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nadal-Ribelles M, et al. (2019) Yeast Single-cell RNA-seq, Cell by Cell and Step by Step. Bio Protoc 9(17):e3359 PMID:33654857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aymoz D, et al. (2018) Timing of gene expression in a cell-fate decision system. Mol Syst Biol 14(4):e8024 PMID:29695607
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duch A, et al. (2018) Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nat Commun 9(1):379 PMID:29371596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martins TS, et al. (2018) The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 1863(1):61-70 PMID:29032057
    • SGD Paper
    • DOI full text
    • PubMed
  • Romero AM, et al. (2018) Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. mBio 9(5) PMID:30228242
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Urrios A, et al. (2018) Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses. ACS Synth Biol 7(4):1095-1104 PMID:29584406
    • SGD Paper
    • DOI full text
    • PubMed
  • Vázquez-Ibarra A, et al. (2018) Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. FEBS J 285(6):1079-1096 PMID:29341399
    • SGD Paper
    • DOI full text
    • PubMed
  • Chang YL, et al. (2017) Yeast Cip1 is activated by environmental stress to inhibit Cdk1-G1 cyclins via Mcm1 and Msn2/4. Nat Commun 8(1):56 PMID:28676626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodríguez-González M, et al. (2017) Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeast Kluyveromyces lactis. Mol Microbiol 104(5):822-836 PMID:28295748
    • SGD Paper
    • DOI full text
    • PubMed
  • Silva A, et al. (2017) Regulation of transcription elongation in response to osmostress. PLoS Genet 13(11):e1007090 PMID:29155810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stojanovski K, et al. (2017) Interaction Dynamics Determine Signaling and Output Pathway Responses. Cell Rep 19(1):136-149 PMID:28380353
    • SGD Paper
    • DOI full text
    • PubMed
  • Raguz Nakic Z, et al. (2016) Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae. BMC Syst Biol 10(1):104 PMID:27846849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Studer RA, et al. (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354(6309):229-232 PMID:27738172
    • SGD Paper
    • DOI full text
    • PubMed
  • Urrios A, et al. (2016) A Synthetic Multicellular Memory Device. ACS Synth Biol 5(8):862-73 PMID:27439436
    • SGD Paper
    • DOI full text
    • PubMed
  • González-Novo A, et al. (2015) Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 35(9):1606-18 PMID:25733686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nadal-Ribelles M, et al. (2015) H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Res 43(10):4937-49 PMID:25813039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharifian H, et al. (2015) Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade. Integr Biol (Camb) 7(4):412-22 PMID:25734609
    • SGD Paper
    • DOI full text
    • PubMed
  • Solé C, et al. (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61(3):299-308 PMID:25262381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E and Posas F (2015) Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 282(17):3275-85 PMID:25996081
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nadal-Ribelles M, et al. (2014) Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol Cell 53(4):549-61 PMID:24508389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duch A, et al. (2013) Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 425(23):4745-55 PMID:24021813
    • SGD Paper
    • DOI full text
    • PubMed
  • Duch A, et al. (2013) Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493(7430):116-9 PMID:23178807
    • SGD Paper
    • DOI full text
    • PubMed
  • Geijer C, et al. (2013) Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS J 280(16):3854-67 PMID:23758973
    • SGD Paper
    • DOI full text
    • PubMed
  • Regot S, et al. (2013) The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 288(24):17384-98 PMID:23645671
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barberis M, et al. (2012) Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 30(1):108-30 PMID:21963604
    • SGD Paper
    • DOI full text
    • PubMed
  • Duch A, et al. (2012) The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses. FEBS Lett 586(18):2925-31 PMID:22820251
    • SGD Paper
    • DOI full text
    • PubMed
  • Nadal-Ribelles M, et al. (2012) Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biol 13(11):R106 PMID:23158682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reiter W, et al. (2012) Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins. Proteomics 12(19-20):3030-43 PMID:22890988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ruiz-Roig C, et al. (2012) The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell 23(21):4286-96 PMID:22956768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saito H and Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289-318 PMID:23028184
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adrover MÀ, et al. (2011) Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress. Sci Signal 4(192):ra63 PMID:21954289
    • SGD Paper
    • DOI full text
    • PubMed
  • Eraso P, et al. (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 79(5):1339-52 PMID:21205016
    • SGD Paper
    • DOI full text
    • PubMed
  • Escoté X, et al. (2011) The stress-activated protein kinase Hog1 develops a critical role after resting state. Mol Microbiol 80(2):423-35 PMID:21371138
    • SGD Paper
    • DOI full text
    • PubMed
  • Klein M, et al. (2011) Design, synthesis and characterization of a highly effective inhibitor for analog-sensitive (as) kinases. PLoS One 6(6):e20789 PMID:21698101
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pelet S, et al. (2011) Transient activation of the HOG MAPK pathway regulates bimodal gene expression. Science 332(6030):732-5 PMID:21551064
    • SGD Paper
    • DOI full text
    • PubMed
  • Regot S, et al. (2011) Distributed biological computation with multicellular engineered networks. Nature 469(7329):207-11 PMID:21150900
    • SGD Paper
    • DOI full text
    • PubMed
  • Solé C, et al. (2011) Control of Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon osmostress. EMBO J 30(16):3274-84 PMID:21743437
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vendrell A and Posas F (2011) Sir2 plays a key role in cell fate determination upon SAPK activation. Aging (Albany NY) 3(12):1163-8 PMID:22245992
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vendrell A, et al. (2011) Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO Rep 12(10):1062-8 PMID:21836634
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E and Posas F (2011) Elongating under Stress. Genet Res Int 2011:326286 PMID:22567351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ruiz-Roig C, et al. (2010) The Rpd3L HDAC complex is essential for the heat stress response in yeast. Mol Microbiol 76(4):1049-62 PMID:20398213
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaber J, et al. (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39(11):1547-56 PMID:20563574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Warringer J, et al. (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21(17):3080-92 PMID:20587780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E and Posas F (2010) Multilayered control of gene expression by stress-activated protein kinases. EMBO J 29(1):4-13 PMID:19942851
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klopf E, et al. (2009) Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol Cell Biol 29(18):4994-5007 PMID:19620280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Macia J, et al. (2009) Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci Signal 2(63):ra13 PMID:19318625
    • SGD Paper
    • DOI full text
    • PubMed
  • Mas G, et al. (2009) Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO J 28(4):326-36 PMID:19153600
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yaakov G, et al. (2009) The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol Biol Cell 20(15):3572-82 PMID:19477922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bermejo C, et al. (2008) The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19(3):1113-24 PMID:18184748
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clotet J and Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63-76 PMID:17875412
    • SGD Paper
    • DOI full text
    • PubMed
  • Zapater M, et al. (2007) Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmostress conditions. Mol Cell Biol 27(11):3900-10 PMID:17403898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E, et al. (2007) Mucins, osmosensors in eukaryotic cells? Trends Cell Biol 17(12):571-4 PMID:17981467
    • SGD Paper
    • DOI full text
    • PubMed
  • Clotet J, et al. (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25(11):2338-46 PMID:16688223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Köhler A, et al. (2006) The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell 17(10):4228-36 PMID:16855026
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Proft M, et al. (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23(2):241-50 PMID:16857590
    • SGD Paper
    • DOI full text
    • PubMed
  • Thorsen M, et al. (2006) The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17(10):4400-10 PMID:16885417
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zapater M, et al. (2005) Control of cell cycle progression by the stress-activated Hog1 MAPK. Cell Cycle 4(1):6-7 PMID:15613849
    • SGD Paper
    • DOI full text
    • PubMed
  • De Nadal E, et al. (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427(6972):370-4 PMID:14737171
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Escoté X, et al. (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6(10):997-1002 PMID:15448699
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomás-Cobos L, et al. (2004) Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279(21):22010-9 PMID:15014083
    • SGD Paper
    • DOI full text
    • PubMed
  • Alepuz PM, et al. (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22(10):2433-42 PMID:12743037
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E, et al. (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23(1):229-37 PMID:12482976
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Nadal E, et al. (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3(8):735-40 PMID:12151331
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pascual-Ahuir A, et al. (2001) Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem 276(40):37373-8 PMID:11500510
    • SGD Paper
    • DOI full text
    • PubMed
  • Proft M, et al. (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20(5):1123-33 PMID:11230135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bilsland-Marchesan E, et al. (2000) Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20(11):3887-95 PMID:10805732
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Posas F, et al. (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249-55 PMID:10748181
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Raitt DC, et al. (2000) Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19(17):4623-31 PMID:10970855
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferrigno P, et al. (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17(19):5606-14 PMID:9755161
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Posas F and Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17(5):1385-94 PMID:9482735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Posas F, et al. (1998) Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol 18(10):5788-96 PMID:9742096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Posas F, et al. (1998) Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1(2):175-82 PMID:10066475
    • SGD Paper
    • DOI full text
    • PubMed
  • de Nadal E, et al. (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci U S A 95(13):7357-62 PMID:9636153
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Posas F and Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276(5319):1702-5 PMID:9180081
    • SGD Paper
    • DOI full text
    • PubMed
  • Takekawa M, et al. (1997) A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J 16(16):4973-82 PMID:9305639
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clotet J, et al. (1996) The NH2-terminal extension of protein phosphatase PPZ1 has an essential functional role. J Biol Chem 271(42):26349-55 PMID:8824289
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86(6):865-75 PMID:8808622
    • SGD Paper
    • DOI full text
    • PubMed
  • Clotet J, et al. (1995) Role of protein phosphatase 2A in the control of glycogen metabolism in yeast. Eur J Biochem 229(1):207-14 PMID:7744031
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1995) Biochemical characterization of recombinant yeast PPZ1, a protein phosphatase involved in salt tolerance. FEBS Lett 368(1):39-44 PMID:7615085
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1995) The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem 270(22):13036-41 PMID:7768897
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1993) The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Lett 318(3):282-6 PMID:8382634
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J Biol Chem 268(2):1349-54 PMID:7678255
    • SGD Paper
    • PubMed
  • Posas F, et al. (1992) Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region. J Biol Chem 267(17):11734-40 PMID:1318299
    • SGD Paper
    • PubMed
  • Clotet J, et al. (1991) The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation. Curr Genet 19(5):339-42 PMID:1913873
    • SGD Paper
    • DOI full text
    • PubMed
  • Posas F, et al. (1991) Saccharomyces cerevisiae gene SIT4 is involved in the control of glycogen metabolism. FEBS Lett 279(2):341-5 PMID:1848194
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top