AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Parker R
  • References

Author: Parker R


References 142 references


No citations for this author.

Download References (.nbib)

  • Currie SL, et al. (2023) Quantitative reconstitution of yeast RNA processing bodies. Proc Natl Acad Sci U S A 120(14):e2214064120 PMID:36972455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tollervey D and Parker R (2022) Christine Guthrie: Splicing genetics and mentorship into the RNA world. Proc Natl Acad Sci U S A 119(47):e2216884119 PMID:36343216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tauber D, et al. (2020) Modulation of RNA Condensation by the DEAD-Box Protein eIF4A. Cell 180(3):411-426.e16 PMID:31928844
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xing W, et al. (2020) A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. Elife 9 PMID:32553117
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moon SL and Parker R (2018) Analysis of eIF2B bodies and their relationships with stress granules and P-bodies. Sci Rep 8(1):12264 PMID:30115954
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tutucci E, et al. (2018) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15(1):81-89 PMID:29131164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Treeck B, et al. (2018) RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci U S A 115(11):2734-2739 PMID:29483269
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harigaya Y and Parker R (2017) The link between adjacent codon pairs and mRNA stability. BMC Genomics 18(1):364 PMID:28486986
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khong A, et al. (2017) The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules. Mol Cell 68(4):808-820.e5 PMID:29129640
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rao BS and Parker R (2017) Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 114(45):E9569-E9578 PMID:29078371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walters RW, et al. (2017) Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 114(3):480-485 PMID:28031484
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eshleman N, et al. (2016) Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy. RNA 22(8):1200-14 PMID:27251550
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garcia JF and Parker R (2016) Ubiquitous accumulation of 3' mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays. RNA 22(5):657-9 PMID:27090788
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain S, et al. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell 164(3):487-98 PMID:26777405
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mitchell SF and Parker R (2016) Identification of Endogenous mRNA-Binding Proteins in Yeast Using Crosslinking and PolyA Enrichment. Methods Mol Biol 1421:153-63 PMID:26965264
    • SGD Paper
    • DOI full text
    • PubMed
  • Poornima G, et al. (2016) Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 44(19):9358-9368 PMID:27613419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wheeler JR, et al. (2016) Distinct stages in stress granule assembly and disassembly. Elife 5 PMID:27602576
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garcia JF and Parker R (2015) MS2 coat proteins bound to yeast mRNAs block 5' to 3' degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21(8):1393-5 PMID:26092944
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mitchell SF and Parker R (2015) In vivo cross-linking followed by polyA enrichment to identify yeast mRNA binding proteins. Methods Mol Biol 1259:35-47 PMID:25579578
    • SGD Paper
    • DOI full text
    • PubMed
  • Walters RW, et al. (2015) Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21(9):1660-71 PMID:26199455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shukla S and Parker R (2014) Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc Natl Acad Sci U S A 111(32):E3277-86 PMID:25071210
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walters RW, et al. (2014) Edc3 function in yeast and mammals is modulated by interaction with NAD-related compounds. G3 (Bethesda) 4(4):613-22 PMID:24504254
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu D, et al. (2014) Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Res 24(2):233-46 PMID:24247251
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchan JR, et al. (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153(7):1461-74 PMID:23791177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mitchell SF, et al. (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127-33 PMID:23222640
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchan JR, et al. (2012) TOR-tured yeast find a new way to stand the heat. Mol Cell 47(2):155-7 PMID:22841000
    • SGD Paper
    • DOI full text
    • PubMed
  • Harigaya Y and Parker R (2012) Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 109(29):11764-9 PMID:22752303
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luhtala N and Parker R (2012) Structure-function analysis of Rny1 in tRNA cleavage and growth inhibition. PLoS One 7(7):e41111 PMID:22829915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191(3):671-702 PMID:22785621
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rajyaguru P and Parker R (2012) RGG motif proteins: modulators of mRNA functional states. Cell Cycle 11(14):2594-9 PMID:22767211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rajyaguru P, et al. (2012) Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 45(2):244-54 PMID:22284680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Balagopal V and Parker R (2011) Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17(5):835-42 PMID:21460238
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchan JR, et al. (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124(Pt 2):228-39 PMID:21172806
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hilliker A, et al. (2011) The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell 43(6):962-72 PMID:21925384
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swisher KD and Parker R (2011) Interactions between Upf1 and the decapping factors Edc3 and Pat1 in Saccharomyces cerevisiae. PLoS One 6(10):e26547 PMID:22065998
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchan JR, et al. (2010) Analyzing P-bodies and stress granules in Saccharomyces cerevisiae. Methods Enzymol 470:619-40 PMID:20946828
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen L, et al. (2010) Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat Struct Mol Biol 17(10):1233-40 PMID:20890290
    • SGD Paper
    • DOI full text
    • PubMed
  • Harigaya Y, et al. (2010) Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 30(6):1446-56 PMID:20086104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nissan T, et al. (2010) Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39(5):773-83 PMID:20832728
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swisher KD and Parker R (2010) Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS One 5(4):e10006 PMID:20368989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoon JH, et al. (2010) Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. J Cell Biol 189(5):813-27 PMID:20513766
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Balagopal V and Parker R (2009) Stm1 modulates mRNA decay and Dhh1 function in Saccharomyces cerevisiae. Genetics 181(1):93-103 PMID:19015546
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luhtala N and Parker R (2009) LSM1 over-expression in Saccharomyces cerevisiae depletes U6 snRNA levels. Nucleic Acids Res 37(16):5529-36 PMID:19596813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Passos DO, et al. (2009) Analysis of Dom34 and its function in no-go decay. Mol Biol Cell 20(13):3025-32 PMID:19420139
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swisher KD and Parker R (2009) Related mechanisms for mRNA and rRNA quality control. Mol Cell 34(4):401-2 PMID:19481519
    • SGD Paper
    • DOI full text
    • PubMed
  • Thompson DM and Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185(1):43-50 PMID:19332891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beckham C, et al. (2008) The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell 19(3):984-93 PMID:18162578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buchan JR, et al. (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183(3):441-55 PMID:18981231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ling SH, et al. (2008) Crystal structure of human Edc3 and its functional implications. Mol Cell Biol 28(19):5965-76 PMID:18678652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nissan T and Parker R (2008) Analyzing P-bodies in Saccharomyces cerevisiae. Methods Enzymol 448:507-20 PMID:19111192
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Passos DO and Parker R (2008) Analysis of cytoplasmic mRNA decay in Saccharomyces cerevisiae. Methods Enzymol 448:409-27 PMID:19111187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pedro-Segura E, et al. (2008) The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J Biol Chem 283(42):28527-35 PMID:18715869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pilkington GR and Parker R (2008) Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 28(4):1298-312 PMID:18086885
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thompson DM, et al. (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14(10):2095-103 PMID:18719243
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brengues M and Parker R (2007) Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol Biol Cell 18(7):2592-602 PMID:17475768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Decker CJ, et al. (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179(3):437-49 PMID:17984320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Doma MK and Parker R (2007) RNA quality control in eukaryotes. Cell 131(4):660-8 PMID:18022361
    • SGD Paper
    • DOI full text
    • PubMed
  • Teixeira D and Parker R (2007) Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 18(6):2274-87 PMID:17429074
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thompson DM and Parker R (2007) Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol Cell Biol 27(1):92-101 PMID:17074811
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baker KE and Parker R (2006) Conventional 3' end formation is not required for NMD substrate recognition in Saccharomyces cerevisiae. RNA 12(8):1441-5 PMID:16809819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beliakova-Bethell N, et al. (2006) Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components. RNA 12(1):94-101 PMID:16373495
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Doma MK and Parker R (2006) Revenge of the NRD: preferential degradation of nonfunctional eukaryotic rRNA. Dev Cell 11(6):757-8 PMID:17141152
    • SGD Paper
    • DOI full text
    • PubMed
  • Doma MK and Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440(7083):561-4 PMID:16554824
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hilgers V, et al. (2006) Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12(10):1835-45 PMID:16940550
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Segal SP, et al. (2006) Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol Cell Biol 26(13):5120-30 PMID:16782896
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • She M, et al. (2006) Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 13(1):63-70 PMID:16341225
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sheth U and Parker R (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125(6):1095-109 PMID:16777600
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brengues M, et al. (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310(5747):486-9 PMID:16141371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng Z, et al. (2005) Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11(8):1258-70 PMID:15987810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coller J and Parker R (2005) General translational repression by activators of mRNA decapping. Cell 122(6):875-86 PMID:16179257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muhlrad D and Parker R (2005) The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J 24(5):1033-45 PMID:15706350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teixeira D, et al. (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11(4):371-82 PMID:15703442
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tharun S, et al. (2005) Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection. Genetics 170(1):33-46 PMID:15716506
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wilson MA, et al. (2005) Genetic interactions between [PSI+] and nonstop mRNA decay affect phenotypic variation. Proc Natl Acad Sci U S A 102(29):10244-9 PMID:16002465
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baker KE, et al. (2004) The yeast Apq12 protein affects nucleocytoplasmic mRNA transport. RNA 10(9):1352-8 PMID:15273328
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng Z, et al. (2004) Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci 13(10):2673-84 PMID:15340168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kshirsagar M and Parker R (2004) Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics 166(2):729-39 PMID:15020463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • She M, et al. (2004) Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat Struct Mol Biol 11(3):249-56 PMID:14758354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cao D and Parker R (2003) Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113(4):533-45 PMID:12757713
    • SGD Paper
    • DOI full text
    • PubMed
  • Schwartz D, et al. (2003) The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA 9(2):239-51 PMID:12554867
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sheth U and Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300(5620):805-8 PMID:12730603
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steiger M, et al. (2003) Analysis of recombinant yeast decapping enzyme. RNA 9(2):231-8 PMID:12554866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Decker CJ and Parker R (2002) mRNA decay enzymes: decappers conserved between yeast and mammals. Proc Natl Acad Sci U S A 99(20):12512-4 PMID:12271148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Frischmeyer PA, et al. (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295(5563):2258-61 PMID:11910109
    • SGD Paper
    • DOI full text
    • PubMed
  • Steiger MA and Parker R (2002) Analyzing mRNA decay in Saccharomyces cerevisiae. Methods Enzymol 351:648-60 PMID:12073375
    • SGD Paper
    • DOI full text
    • PubMed
  • Tucker M, et al. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21(6):1427-36 PMID:11889048
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Hoof A, et al. (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295(5563):2262-4 PMID:11910110
    • SGD Paper
    • DOI full text
    • PubMed
  • Coller JM, et al. (2001) The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7(12):1717-27 PMID:11780629
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dunckley T and Parker R (2001) Yeast mRNA decapping enzyme. Methods Enzymol 342:226-33 PMID:11586895
    • SGD Paper
    • DOI full text
    • PubMed
  • Dunckley T, et al. (2001) Two related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae. Genetics 157(1):27-37 PMID:11139489
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He W and Parker R (2001) The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation. Genetics 158(4):1445-55 PMID:11514438
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hilleren P and Parker R (2001) Defects in the mRNA export factors Rat7p, Gle1p, Mex67p, and Rat8p cause hyperadenylation during 3'-end formation of nascent transcripts. RNA 7(5):753-64 PMID:11350039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hilleren P, et al. (2001) Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature 413(6855):538-42 PMID:11586364
    • SGD Paper
    • DOI full text
    • PubMed
  • Tharun S and Parker R (2001) Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8(5):1075-83 PMID:11741542
    • SGD Paper
    • DOI full text
    • PubMed
  • Tucker M, et al. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104(3):377-86 PMID:11239395
    • SGD Paper
    • DOI full text
    • PubMed
  • He W and Parker R (2000) Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol 12(3):346-50 PMID:10801455
    • SGD Paper
    • DOI full text
    • PubMed
  • Jacobs Anderson JS and Parker R (2000) Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 28(7):1604-17 PMID:10710427
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Olivas W and Parker R (2000) The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J 19(23):6602-11 PMID:11101532
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwartz DC and Parker R (2000) mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol 20(21):7933-42 PMID:11027264
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tharun S, et al. (2000) Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404(6777):515-8 PMID:10761922
    • SGD Paper
    • DOI full text
    • PubMed
  • Tucker M and Parker R (2000) Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69:571-95 PMID:10966469
    • SGD Paper
    • DOI full text
    • PubMed
  • van Hoof A, et al. (2000) Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol 20(21):8230-43 PMID:11027292
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Hoof A, et al. (2000) Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 19(6):1357-65 PMID:10716935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Hoof A, et al. (2000) Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20(2):441-52 PMID:10611222
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dunckley T and Parker R (1999) The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 18(19):5411-22 PMID:10508173
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He W and Parker R (1999) Analysis of mRNA decay pathways in Saccharomyces cerevisiae. Methods 17(1):3-10 PMID:10075877
    • SGD Paper
    • DOI full text
    • PubMed
  • Hilleren P and Parker R (1999) mRNA surveillance in eukaryotes: kinetic proofreading of proper translation termination as assessed by mRNP domain organization? RNA 5(6):711-9 PMID:10376871
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • LaGrandeur T and Parker R (1999) The cis acting sequences responsible for the differential decay of the unstable MFA2 and stable PGK1 transcripts in yeast include the context of the translational start codon. RNA 5(3):420-33 PMID:10094310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muhlrad D and Parker R (1999) Recognition of yeast mRNAs as "nonsense containing" leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol Biol Cell 10(11):3971-8 PMID:10564284
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muhlrad D and Parker R (1999) Aberrant mRNAs with extended 3' UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5(10):1299-307 PMID:10573121
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwartz DC and Parker R (1999) Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 19(8):5247-56 PMID:10409716
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tharun S and Parker R (1999) Analysis of mutations in the yeast mRNA decapping enzyme. Genetics 151(4):1273-85 PMID:10101156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Hoof A and Parker R (1999) The exosome: a proteasome for RNA? Cell 99(4):347-50 PMID:10571176
    • SGD Paper
    • DOI full text
    • PubMed
  • LaGrandeur TE and Parker R (1998) Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J 17(5):1487-96 PMID:9482745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Olivas WM, et al. (1997) Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. Nucleic Acids Res 25(22):4619-25 PMID:9358174
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anderson JS and Parker R (1996) RNA turnover: the helicase story unwinds. Curr Biol 6(7):780-2 PMID:8805288
    • SGD Paper
    • DOI full text
    • PubMed
  • Beelman CA, et al. (1996) An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382(6592):642-6 PMID:8757137
    • SGD Paper
    • DOI full text
    • PubMed
  • Caponigro G and Parker R (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60(1):233-49 PMID:8852902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Caponigro G and Parker R (1996) mRNA turnover in yeast promoted by the MATalpha1 instability element. Nucleic Acids Res 24(21):4304-12 PMID:8932387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hatfield L, et al. (1996) Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5830-8 PMID:8816497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • LaGrandeur TE and Parker R (1996) mRNA decapping activities and their biological roles. Biochimie 78(11-12):1049-55 PMID:9150884
    • SGD Paper
    • DOI full text
    • PubMed
  • Beelman CA and Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81(2):179-83 PMID:7736570
    • SGD Paper
    • DOI full text
    • PubMed
  • Caponigro G and Parker R (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9(19):2421-32 PMID:7557393
    • SGD Paper
    • DOI full text
    • PubMed
  • Mandart E and Parker R (1995) Effects of mutations in the Saccharomyces cerevisiae RNA14, RNA15, and PAP1 genes on polyadenylation in vivo. Mol Cell Biol 15(12):6979-86 PMID:8524265
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muhlrad D, et al. (1995) Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol 15(4):2145-56 PMID:7891709
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beelman CA and Parker R (1994) Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J Biol Chem 269(13):9687-92 PMID:8144558
    • SGD Paper
    • PubMed
  • Muhlrad D, et al. (1994) Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev 8(7):855-66 PMID:7926773
    • SGD Paper
    • DOI full text
    • PubMed
  • Caponigro G, et al. (1993) A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol 13(9):5141-8 PMID:8355674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Decker CJ and Parker R (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 7(8):1632-43 PMID:8393418
    • SGD Paper
    • DOI full text
    • PubMed
  • Parker R and Siliciano PG (1993) Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature 361(6413):660-2 PMID:8437627
    • SGD Paper
    • DOI full text
    • PubMed
  • Heaton B, et al. (1992) Analysis of chimeric mRNAs derived from the STE3 mRNA identifies multiple regions within yeast mRNAs that modulate mRNA decay. Nucleic Acids Res 20(20):5365-73 PMID:1437553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muhlrad D and Parker R (1992) Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev 6(11):2100-11 PMID:1427074
    • SGD Paper
    • DOI full text
    • PubMed
  • Herrick D, et al. (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10(5):2269-84 PMID:2183028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parker R and Jacobson A (1990) Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MAT alpha 1 gene are involved in promoting rapid mRNA decay in yeast. Proc Natl Acad Sci U S A 87(7):2780-4 PMID:2181450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parker R (1989) Genetic methods for identification and characterization of RNA-RNA and RNA-protein interactions. Methods Enzymol 180:510-7 PMID:2482431
    • SGD Paper
    • DOI full text
    • PubMed
  • Parker R, et al. (1988) Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol Cell Biol 8(8):3150-9 PMID:2905424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ruohola H, et al. (1988) Orientation-dependent function of a short CYC1 DNA fragment in directing mRNA 3' end formation in yeast. Proc Natl Acad Sci U S A 85(14):5041-5 PMID:2839828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Couto JR, et al. (1987) A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes Dev 1(5):445-55 PMID:2890553
    • SGD Paper
    • DOI full text
    • PubMed
  • Parker R, et al. (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49(2):229-39 PMID:3552247
    • SGD Paper
    • DOI full text
    • PubMed
  • Cellini A, et al. (1986) Activation of a cryptic TACTAAC box in the Saccharomyces cerevisiae actin intron. Mol Cell Biol 6(5):1571-8 PMID:3023896
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vijayraghavan U, et al. (1986) Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J 5(7):1683-95 PMID:3017708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parker R and Guthrie C (1985) A point mutation in the conserved hexanucleotide at a yeast 5' splice junction uncouples recognition, cleavage, and ligation. Cell 41(1):107-18 PMID:2986840
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top