AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Haber JE
  • References

Author: Haber JE


References 257 references


No citations for this author.

Download References (.nbib)

  • Sapède E, et al. (2024) Nonhomologous tails direct heteroduplex rejection and mismatch correction during single-strand annealing in Saccharomyces cerevisiae. PLoS Genet 20(2):e1010527 PMID:38315739
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N, et al. (2024) Spontaneous and double-strand break repair-associated quasipalindrome and frameshift mutagenesis in budding yeast: role of mismatch repair. Genetics 227(3) PMID:38691577
    • SGD Paper
    • DOI full text
    • PubMed
  • Polleys EJ, et al. (2023) Structure-forming CAG/CTG repeats interfere with gap repair to cause repeat expansions and chromosome breaks. Nat Commun 14(1):2469 PMID:37120647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Choi J, et al. (2022) Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genet 18(9):e1010056 PMID:36054210
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Epum EA and Haber JE (2022) DNA replication: the recombination connection. Trends Cell Biol 32(1):45-57 PMID:34384659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ait Saada A, et al. (2021) Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures. Nucleic Acids Res 49(7):3932-3947 PMID:33772579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arnould C, et al. (2021) Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590(7847):660-665 PMID:33597753
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gallagher DN and Haber JE (2021) Single-strand template repair: key insights to increase the efficiency of gene editing. Curr Genet 67(5):747-753 PMID:33881574
    • SGD Paper
    • DOI full text
    • PubMed
  • García Fernández F, et al. (2021) Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. J Cell Sci 134(6) PMID:33622771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu L, et al. (2021) Determining the kinetics of break-induced replication (BIR) by the assay for monitoring BIR elongation rate (AMBER). Methods Enzymol 661:139-154 PMID:34776210
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamaguchi M and Haber JE (2021) Monitoring Gene Conversion in Budding Yeast by Southern Blot Analysis. Methods Mol Biol 2153:221-238 PMID:32840783
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Braberg H, et al. (2020) Genetic interaction mapping informs integrative structure determination of protein complexes. Science 370(6522) PMID:33303586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gallagher DN, et al. (2020) A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet 16(10):e1008689 PMID:33057349
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li K, et al. (2020) Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proc Natl Acad Sci U S A 117(35):21354-21363 PMID:32817543
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Waterman DP, et al. (2020) Checkpoint Responses to DNA Double-Strand Breaks. Annu Rev Biochem 89:103-133 PMID:32176524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klein HL, et al. (2019) Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb Cell 6(1):1-64 PMID:30652105
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Memisoglu G and Haber JE (2019) Dephosphorylation of the Atg1 kinase complex by type 2C protein phosphatases. Mol Cell Oncol 6(3):1588658 PMID:31131308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Memisoglu G, et al. (2019) PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proc Natl Acad Sci U S A 116(5):1613-1620 PMID:30655342
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Memisoglu G, et al. (2019) Mec1ATR Autophosphorylation and Ddc2ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling. Cell Rep 28(4):1090-1102.e3 PMID:31340146
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thon G, et al. (2019) Mating-type switching by homology-directed recombinational repair: a matter of choice. Curr Genet 65(2):351-362 PMID:30382337
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Waterman DP, et al. (2019) Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 15(3):e1008001 PMID:30822309
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wild P, et al. (2019) Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 75(4):859-874.e4 PMID:31351878
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Botchkarev VV and Haber JE (2018) Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 64(1):87-96 PMID:28770345
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gallagher DN and Haber JE (2018) Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 13(2):397-405 PMID:29083855
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garbacz MA, et al. (2018) Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat Commun 9(1):858 PMID:29487291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lemos BR, et al. (2018) CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A 115(9):E2040-E2047 PMID:29440496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roy KR, et al. (2018) Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 36(6):512-520 PMID:29734294
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Botchkarev VV, et al. (2017) The budding yeast Polo-like kinase localizes to distinct populations at centrosomes during mitosis. Mol Biol Cell 28(8):1011-1020 PMID:28228549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eapen VV, et al. (2017) A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 114(7):E1158-E1167 PMID:28154131
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehta A, et al. (2017) Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Mol Cell 65(3):515-526.e3 PMID:28065599
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang RW, et al. (2017) Position effects influencing intrachromosomal repair of a double-strand break in budding yeast. PLoS One 12(7):e0180994 PMID:28700723
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Avşaroğlu B, et al. (2016) Chromosome-refolding model of mating-type switching in yeast. Proc Natl Acad Sci U S A 113(45):E6929-E6938 PMID:27791086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (2016) A Life Investigating Pathways That Repair Broken Chromosomes. Annu Rev Genet 50:1-28 PMID:27732795
    • SGD Paper
    • DOI full text
    • PubMed
  • Jain S, et al. (2016) Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae. PLoS Genet 12(4):e1005976 PMID:27074148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain S, et al. (2016) Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 203(2):667-75 PMID:27075725
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee CS, et al. (2016) Chromosome position determines the success of double-strand break repair. Proc Natl Acad Sci U S A 113(2):E146-54 PMID:26715752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nakajima Y and Haber JE (2016) Chromosomes at loose ends. Nat Cell Biol 18(3):257-9 PMID:26911910
    • SGD Paper
    • DOI full text
    • PubMed
  • Tsabar M, et al. (2016) Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair. Genes Dev 30(10):1211-24 PMID:27222517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsabar M, et al. (2016) A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genet 12(4):e1006021 PMID:27128635
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsabar M, et al. (2016) Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast. DNA Repair (Amst) 47:21-29 PMID:27720308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yimit A, et al. (2016) MTE1 Functions with MPH1 in Double-Strand Break Repair. Genetics 203(1):147-57 PMID:26920759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferrari M, et al. (2015) Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet 11(1):e1004928 PMID:25569305
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (2015) TOPping off meiosis. Mol Cell 57(4):577-581 PMID:25699706
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee CS and Haber JE (2015) Mating-type Gene Switching in Saccharomyces cerevisiae. Microbiol Spectr 3(2):MDNA3-0013-2014 PMID:26104712
    • SGD Paper
    • DOI full text
    • PubMed
  • Tsabar M, et al. (2015) Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res 43(14):6889-901 PMID:26019182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsabar M, et al. (2015) Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Res 43(14):6902-18 PMID:26019181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anand RP, et al. (2014) Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 28(21):2394-406 PMID:25367035
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Avşaroğlu B, et al. (2014) Effect of chromosome tethering on nuclear organization in yeast. PLoS One 9(7):e102474 PMID:25020108
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Costantino L, et al. (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343(6166):88-91 PMID:24310611
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee CS, et al. (2014) Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nat Struct Mol Biol 21(1):103-9 PMID:24336221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mehta A and Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428 PMID:25104768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsaponina O and Haber JE (2014) Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae. Mol Cell 55(4):615-25 PMID:25066232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dotiwala F, et al. (2013) DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. Proc Natl Acad Sci U S A 110(1):E41-9 PMID:23169651
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eapen VV and Haber JE (2013) DNA damage signaling triggers the cytoplasm-to-vacuole pathway of autophagy to regulate cell cycle progression. Autophagy 9(3):440-1 PMID:23322149
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (2013) Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. Cell Rep 3(6):2168-78 PMID:23746449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Haber JE (2013) Retrospective. Fred Sherman (1932-2013). Science 342(6162):1059 PMID:24288325
    • SGD Paper
    • DOI full text
    • PubMed
  • Saini N, et al. (2013) Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502(7471):389-92 PMID:24025772
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsabar M and Haber JE (2013) Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Curr Opin Genet Dev 23(2):166-73 PMID:23602331
    • SGD Paper
    • DOI full text
    • PubMed
  • Eapen VV, et al. (2012) The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 32(22):4727-40 PMID:23007155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (2012) Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191(1):33-64 PMID:22555442
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li J, et al. (2012) Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet 8(4):e1002630 PMID:22496671
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malkova A and Haber JE (2012) Mutations arising during repair of chromosome breaks. Annu Rev Genet 46:455-73 PMID:23146099
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugawara N and Haber JE (2012) Monitoring DNA recombination initiated by HO endonuclease. Methods Mol Biol 920:349-70 PMID:22941616
    • SGD Paper
    • DOI full text
    • PubMed
  • Coïc E, et al. (2011) Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 189(4):1225-33 PMID:21954161
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hicks WM, et al. (2011) Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci U S A 108(8):3108-15 PMID:21292986
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JA, et al. (2011) Protein phosphatases pph3, ptc2, and ptc3 play redundant roles in DNA double-strand break repair by homologous recombination. Mol Cell Biol 31(3):507-16 PMID:21135129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carlton PM, et al. (2010) Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci U S A 107(37):16016-22 PMID:20705899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dotiwala F, et al. (2010) Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism. Curr Biol 20(4):328-32 PMID:20096585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hicks WM, et al. (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329(5987):82-5 PMID:20595613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lydeard JR, et al. (2010) Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24(11):1133-44 PMID:20516198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lydeard JR, et al. (2010) Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet 6(5):e1000973 PMID:20523895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saponaro M, et al. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6(2):e1000858 PMID:20195513
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toh GW, et al. (2010) Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails. DNA Repair (Amst) 9(6):718-26 PMID:20382573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Doksani Y, et al. (2009) Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137(2):247-58 PMID:19361851
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain S, et al. (2009) A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23(3):291-303 PMID:19204116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JA and Haber JE (2009) Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc Natl Acad Sci U S A 106(4):1151-6 PMID:19164567
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash R, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23(1):67-79 PMID:19136626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coïc E, et al. (2008) Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae. Genetics 179(1):199-211 PMID:18458103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim HS, et al. (2008) Functional interactions between Sae2 and the Mre11 complex. Genetics 178(2):711-23 PMID:18245357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lazzaro F, et al. (2008) Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27(10):1502-12 PMID:18418382
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cortés-Ledesma F, et al. (2007) SMC proteins, new players in the maintenance of genomic stability. Cell Cycle 6(8):914-8 PMID:17404505
    • SGD Paper
    • DOI full text
    • PubMed
  • Dotiwala F, et al. (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci U S A 104(27):11358-63 PMID:17586685
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Flott S, et al. (2007) Phosphorylation of Slx4 by Mec1 and Tel1 regulates the single-strand annealing mode of DNA repair in budding yeast. Mol Cell Biol 27(18):6433-45 PMID:17636031
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JA, et al. (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178(2):209-18 PMID:17635934
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lydeard JR, et al. (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448(7155):820-3 PMID:17671506
    • SGD Paper
    • DOI full text
    • PubMed
  • Morrison AJ, et al. (2007) Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 130(3):499-511 PMID:17693258
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres-Rosell J, et al. (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315(5817):1411-5 PMID:17347440
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Coïc E, et al. (2006) Cell cycle-dependent regulation of Saccharomyces cerevisiae donor preference during mating-type switching by SBF (Swi4/Swi6) and Fkh1. Mol Cell Biol 26(14):5470-80 PMID:16809780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coïc E, et al. (2006) Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 173(3):1197-206 PMID:16624909
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Piccoli G, et al. (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8(9):1032-4 PMID:16892052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (2006) Chromosome breakage and repair. Genetics 173(3):1181-5 PMID:16868119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair (Amst) 5(9-10):998-1009 PMID:16807137
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE and Debatisse M (2006) Gene amplification: yeast takes a turn. Cell 125(7):1237-40 PMID:16814711
    • SGD Paper
    • DOI full text
    • PubMed
  • Harrison JC and Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209-35 PMID:16805667
    • SGD Paper
    • DOI full text
    • PubMed
  • Ira G, et al. (2006) Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol Cell Biol 26(24):9424-9 PMID:17030630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keogh MC, et al. (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439(7075):497-501 PMID:16299494
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • McEachern MJ and Haber JE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75:111-35 PMID:16756487
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugawara N and Haber JE (2006) Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol 408:416-29 PMID:16793384
    • SGD Paper
    • DOI full text
    • PubMed
  • Valencia-Burton M, et al. (2006) Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants. Genetics 174(1):41-55 PMID:16782999
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clatworthy AE, et al. (2005) The MRE11-RAD50-XRS2 complex, in addition to other non-homologous end-joining factors, is required for V(D)J joining in yeast. J Biol Chem 280(21):20247-52 PMID:15757898
    • SGD Paper
    • DOI full text
    • PubMed
  • Corda Y, et al. (2005) Inactivation of Ku-mediated end joining suppresses mec1Delta lethality by depleting the ribonucleotide reductase inhibitor Sml1 through a pathway controlled by Tel1 kinase and the Mre11 complex. Mol Cell Biol 25(23):10652-64 PMID:16287875
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liberi G, et al. (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19(3):339-50 PMID:15687257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malkova A, et al. (2005) RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25(3):933-44 PMID:15657422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bressan DA, et al. (2004) Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III. J Cell Biol 164(3):361-71 PMID:14745000
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (2004) Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model. Philos Trans R Soc Lond B Biol Sci 359(1441):79-86 PMID:15065659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ira G, et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431(7011):1011-7 PMID:15496928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Kaye JA, et al. (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14(23):2096-106 PMID:15589151
    • SGD Paper
    • DOI full text
    • PubMed
  • Malkova A, et al. (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168(1):49-63 PMID:15454526
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miyazaki T, et al. (2004) In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J 23(4):939-49 PMID:14765116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morrison AJ, et al. (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119(6):767-75 PMID:15607974
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Shroff R, et al. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14(19):1703-11 PMID:15458641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N, et al. (2004) Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci U S A 101(25):9315-20 PMID:15199178
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unal E, et al. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991-1002 PMID:15610741
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang X and Haber JE (2004) Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol 2(1):E21 PMID:14737196
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 24(16):6891-9 PMID:15282291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu J, et al. (2004) Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol Cell Biol 24(3):1351-64 PMID:14729978
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clatworthy AE, et al. (2003) V(D)J recombination and RAG-mediated transposition in yeast. Mol Cell 12(2):489-99 PMID:14536087
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (2003) Aging: the sins of the parents. Curr Biol 13(21):R843-5 PMID:14588262
    • SGD Paper
    • DOI full text
    • PubMed
  • Ira G, et al. (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115(4):401-11 PMID:14622595
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SE, et al. (2003) Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol Cell Biol 23(23):8913-23 PMID:14612428
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leroy C, et al. (2003) PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11(3):827-35 PMID:12667463
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma JL, et al. (2003) Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 23(23):8820-8 PMID:14612421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N, et al. (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12(1):209-19 PMID:12887906
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (2002) Uses and abuses of HO endonuclease. Methods Enzymol 350:141-64 PMID:12073310
    • SGD Paper
    • DOI full text
    • PubMed
  • Ira G and Haber JE (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22(18):6384-92 PMID:12192038
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SE, et al. (2002) Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst) 1(1):27-40 PMID:12509295
    • SGD Paper
    • DOI full text
    • PubMed
  • Sun K, et al. (2002) Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes Dev 16(16):2085-96 PMID:12183363
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vaze MB, et al. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10(2):373-85 PMID:12191482
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE and Heyer WD (2001) The fuss about Mus81. Cell 107(5):551-4 PMID:11733053
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraus E, et al. (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci U S A 98(15):8255-62 PMID:11459961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SE, et al. (2001) The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol 11(13):1053-7 PMID:11470411
    • SGD Paper
    • DOI full text
    • PubMed
  • Malkova A, et al. (2001) RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev 15(9):1055-60 PMID:11331601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pellicioli A, et al. (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7(2):293-300 PMID:11239458
    • SGD Paper
    • DOI full text
    • PubMed
  • Pâques F, et al. (2001) Expansions and contractions in 36-bp minisatellites by gene conversion in yeast. Genetics 158(1):155-66 PMID:11333226
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Signon L, et al. (2001) Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 21(6):2048-56 PMID:11238940
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valencia M, et al. (2001) NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414(6864):666-9 PMID:11740566
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou Z, et al. (2001) A Saccharomyces servazzii clone homologous to Saccharomyces cerevisiae chromosome III spanning KAR4, ARS 304 and SPB1 lacks the recombination enhancer but contains an unknown ORF. Yeast 18(9):789-95 PMID:11427961
    • SGD Paper
    • DOI full text
    • PubMed
  • Demeter J, et al. (2000) The DNA damage checkpoint signal in budding yeast is nuclear limited. Mol Cell 6(2):487-92 PMID:10983994
    • SGD Paper
    • DOI full text
    • PubMed
  • Evans E, et al. (2000) The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Mol Cell 5(5):789-99 PMID:10882115
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (2000) Recombination: a frank view of exchanges and vice versa. Curr Opin Cell Biol 12(3):286-92 PMID:10801454
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (2000) Partners and pathwaysrepairing a double-strand break. Trends Genet 16(6):259-64 PMID:10827453
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451(1-2):53-69 PMID:10915865
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee SE, et al. (2000) Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 65:303-14 PMID:12760044
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Malkova A, et al. (2000) HO endonuclease-induced recombination in yeast meiosis resembles Spo11-induced events. Proc Natl Acad Sci U S A 97(26):14500-5 PMID:11121053
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richard GF, et al. (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J 19(10):2381-90 PMID:10811629
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N, et al. (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20(14):5300-9 PMID:10866686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colaiácovo MP, et al. (1999) Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Genetics 151(4):1409-23 PMID:10101166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (1999) Sir-Ku-itous routes to make ends meet. Cell 97(7):829-32 PMID:10399911
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24(7):271-5 PMID:10390616
    • SGD Paper
    • DOI full text
    • PubMed
  • Holmes A and Haber JE (1999) Physical monitoring of HO-induced homologous recombination. Methods Mol Biol 113:403-15 PMID:10443437
    • SGD Paper
    • DOI full text
    • PubMed
  • Holmes AM and Haber JE (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96(3):415-24 PMID:10025407
    • SGD Paper
    • DOI full text
    • PubMed
  • Le S, et al. (1999) RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152(1):143-52 PMID:10224249
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SE, et al. (1999) Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol 9(14):767-70 PMID:10421582
    • SGD Paper
    • DOI full text
    • PubMed
  • Pâques F and Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349-404 PMID:10357855
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richard GF, et al. (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol Gen Genet 261(4-5):871-82 PMID:10394925
    • SGD Paper
    • DOI full text
    • PubMed
  • Studamire B, et al. (1999) Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination. Mol Cell Biol 19(11):7558-67 PMID:10523644
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bosco G and Haber JE (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150(3):1037-47 PMID:9799256
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (1998) The many interfaces of Mre11. Cell 95(5):583-6 PMID:9845359
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (1998) A locus control region regulates yeast recombination. Trends Genet 14(8):317-21 PMID:9724964
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561-99 PMID:9928492
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (1998) Meiosis: Avoiding inappropriate relationships. Curr Biol 8(23):R832-5 PMID:9822568
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee SE, et al. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94(3):399-409 PMID:9708741
    • SGD Paper
    • DOI full text
    • PubMed
  • Nugent CI, et al. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8(11):657-60 PMID:9635193
    • SGD Paper
    • DOI full text
    • PubMed
  • Pâques F, et al. (1998) Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol 18(4):2045-54 PMID:9528777
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Umezu K, et al. (1998) Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148(3):989-1005 PMID:9539419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu C, et al. (1998) Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev 12(11):1726-37 PMID:9620858
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (1997) A super new twist on the initiation of meiotic recombination. Cell 89(2):163-6 PMID:9108470
    • SGD Paper
    • DOI full text
    • PubMed
  • Ivanov EL and Haber JE (1997) DNA repair: RAD alert. Curr Biol 7(8):R492-5 PMID:9259545
    • SGD Paper
    • DOI full text
    • PubMed
  • Leung W, et al. (1997) Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci U S A 94(13):6851-6 PMID:9192655
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pâques F and Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6765-71 PMID:9343441
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N, et al. (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A 94(17):9214-9 PMID:9256462
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu X, et al. (1997) Rules of donor preference in saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147(2):399-407 PMID:9335581
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE and Leung WY (1996) Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc Natl Acad Sci U S A 93(24):13949-54 PMID:8943041
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ivanov EL, et al. (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142(3):693-704 PMID:8849880
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malkova A, et al. (1996) Meiotic recombination initiated by a double-strand break in rad50 delta yeast cells otherwise unable to initiate meiotic recombination. Genetics 143(2):741-54 PMID:8725223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malkova A, et al. (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A 93(14):7131-6 PMID:8692957
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH and Haber JE (1996) SUG2 {crl13} is identical to CRL13. Personal Communication
    • SGD Paper
  • Moore JK and Haber JE (1996) Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383(6601):644-6 PMID:8857544
    • SGD Paper
    • DOI full text
    • PubMed
  • Moore JK and Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2164-73 PMID:8628283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seto-Young D, et al. (1996) Genetic probing of the first and second transmembrane helices of the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. J Biol Chem 271(1):581-7 PMID:8550623
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu X and Haber JE (1996) A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87(2):277-85 PMID:8861911
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu X, et al. (1996) Mechanism of MAT alpha donor preference during mating-type switching of Saccharomyces cerevisiae. Mol Cell Biol 16(2):657-68 PMID:8552094
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anand S, et al. (1995) Mutations of G158 and their second-site revertants in the plasma membrane H(+)-ATPase gene (pma1) in Saccharomyces cerevisiae. Biochim Biophys Acta 1234(1):127-32 PMID:7880853
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17(7):609-20 PMID:7646483
    • SGD Paper
    • DOI full text
    • PubMed
  • Ivanov EL and Haber JE (1995) RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15(4):2245-51 PMID:7891718
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monk BC, et al. (1995) The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochim Biophys Acta 1239(1):81-90 PMID:7548148
    • SGD Paper
    • DOI full text
    • PubMed
  • Na S, et al. (1995) MOP2 (SLA2) affects the abundance of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 270(12):6815-23 PMID:7896828
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugawara N, et al. (1995) DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373(6509):84-6 PMID:7800045
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu X and Haber JE (1995) MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev 9(15):1922-32 PMID:7649475
    • SGD Paper
    • DOI full text
    • PubMed
  • Harris SL, et al. (1994) Dominant lethal mutations in the plasma membrane H(+)-ATPase gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 91(22):10531-5 PMID:7937988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ivanov EL, et al. (1994) Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 14(5):3414-25 PMID:8164689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kramer KM, et al. (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 14(2):1293-301 PMID:8289808
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Louis EJ, et al. (1994) The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136(3):789-802 PMID:8005434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monk BC, et al. (1994) Modeling a conformationally sensitive region of the membrane sector of the fungal plasma membrane proton pump. J Bioenerg Biomembr 26(1):101-15 PMID:8027016
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE, et al. (1993) Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc Natl Acad Sci U S A 90(8):3363-7 PMID:8475081
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harris S, et al. (1993) Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135(1):5-16 PMID:8224827
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Na S, et al. (1993) Characterization of yeast plasma membrane H(+)-ATPase mutant pma1-A135V and its revertants. J Biol Chem 268(16):11792-7 PMID:8505307
    • SGD Paper
    • PubMed
  • Fishman-Lobell J and Haber JE (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258(5081):480-4 PMID:1411547
    • SGD Paper
    • DOI full text
    • PubMed
  • Fishman-Lobell J, et al. (1992) Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12(3):1292-303 PMID:1545810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (1992) Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet 8(12):446-52 PMID:1492369
    • SGD Paper
    • DOI full text
    • PubMed
  • Louis EJ and Haber JE (1992) The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics 131(3):559-74 PMID:1628806
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlin DS, et al. (1992) Genetic probing of the yeast plasma membrane H(+)-ATPase. Acta Physiol Scand Suppl 607:183-92 PMID:1449063
    • SGD Paper
    • PubMed
  • Plessis A, et al. (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130(3):451-60 PMID:1551570
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sugawara N and Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12(2):563-75 PMID:1732731
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1991) The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc Natl Acad Sci U S A 88(4):1120-4 PMID:1996313
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harris SL, et al. (1991) Evidence for coupling between membrane and cytoplasmic domains of the yeast plasma membrane H(+)-ATPase. An analysis of intragenic revertants of pma1-105. J Biol Chem 266(36):24439-45 PMID:1837022
    • SGD Paper
    • PubMed
  • Louis EJ and Haber JE (1991) Evolutionarily recent transfer of a group I mitochondrial intron to telomere regions in Saccharomyces cerevisiae. Curr Genet 20(5):411-5 PMID:1807832
    • SGD Paper
    • DOI full text
    • PubMed
  • Ray BL, et al. (1991) The TSM1 gene of Saccharomyces cerevisiae overlaps the MAT locus. Curr Genet 20(1-2):25-31 PMID:1840512
    • SGD Paper
    • DOI full text
    • PubMed
  • Ray BL, et al. (1991) Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 11(10):5372-80 PMID:1922052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borts RH, et al. (1990) Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics 124(3):573-84 PMID:2179055
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lichten M, et al. (1990) Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc Natl Acad Sci U S A 87(19):7653-7 PMID:2217196
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Louis EJ and Haber JE (1990) The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 124(3):533-45 PMID:2179052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Louis EJ and Haber JE (1990) Mitotic recombination among subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics 124(3):547-59 PMID:2179053
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH and Haber JE (1990) Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs. Mol Cell Biol 10(6):2941-9 PMID:2188104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • White CI and Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9(3):663-73 PMID:2178924
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Balzi E, et al. (1989) The suppressor gene scl1+ of Saccharomyces cerevisiae is essential for growth. Gene 83(2):271-9 PMID:2684789
    • SGD Paper
    • DOI full text
    • PubMed
  • Borts RH and Haber JE (1989) Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123(1):69-80 PMID:2680758
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Louis EJ and Haber JE (1989) Nonrecombinant meiosis I nondisjunction in Saccharomyces cerevisiae induced by tRNA ochre suppressors. Genetics 123(1):81-95 PMID:2680759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlin DS, et al. (1989) Defective H(+)-ATPase of hygromycin B-resistant pma1 mutants fromSaccharomyces cerevisiae. J Biol Chem 264(36):21857-64 PMID:2532214
    • SGD Paper
    • PubMed
  • Ramirez JA, et al. (1989) ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 86(20):7866-70 PMID:2530577
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rudin N, et al. (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122(3):519-34 PMID:2668114
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Connolly B, et al. (1988) Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol Cell Biol 8(6):2342-9 PMID:2841579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH and Haber JE (1988) crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants. Genetics 119(2):317-27 PMID:3294104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH and Haber JE (1988) Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics 119(2):303-15 PMID:3294103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perlin DS, et al. (1988) Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263(34):18118-22 PMID:3056938
    • SGD Paper
    • PubMed
  • Rudin N and Haber JE (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8(9):3918-28 PMID:3065627
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borts RH and Haber JE (1987) Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237(4821):1459-65 PMID:2820060
    • SGD Paper
    • DOI full text
    • PubMed
  • Lichten M, et al. (1987) Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115(2):233-46 PMID:3549449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH, et al. (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7(11):4082-8 PMID:2963211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borts RH, et al. (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113(3):551-67 PMID:3015718
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE and Hearn M (1985) Rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosomal loss. Genetics 111(1):7-22 PMID:3896928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weiffenbach B and Haber JE (1985) Homothallic switching of Saccharomyces cerevisiae mating type genes by using a donor containing a large internal deletion. Mol Cell Biol 5(8):2154-8 PMID:3915786
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borts RH, et al. (1984) Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 49:67-76 PMID:6397320
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE and Thorburn PC (1984) Healing of broken linear dicentric chromosomes in yeast. Genetics 106(2):207-26 PMID:6365688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106(2):185-205 PMID:6321297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weiffenbach B, et al. (1983) Deletions and single base pair changes in the yeast mating type locus that prevent homothallic mating type conversions. Proc Natl Acad Sci U S A 80(11):3401-5 PMID:6304708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kraig E, et al. (1982) Sporulation and rna2 lower ribosomal protein mRNA levels by different mechanisms in Saccharomyces cerevisiae. Mol Cell Biol 2(10):1199-204 PMID:6757716
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pearson NJ, et al. (1982) A suppressor of temperature-sensitive rna mutations that affect mRNA metabolism in Saccharomyces cerevisiae. Mol Cell Biol 2(5):571-77 PMID:7050675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shortle D, et al. (1982) Lethal disruption of the yeast actin gene by integrative DNA transformation. Science 217(4557):371-3 PMID:7046050
    • SGD Paper
    • DOI full text
    • PubMed
  • Davidow LS and Haber JE (1981) Relation between the efficiency of homothallic switching of yeast mating type genes and the distribution of cell types. Mol Cell Biol 1(12):1120-4 PMID:7050663
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1981) Transposition of yeast mating type genes from two translocations of the left arm of chromosome III. Mol Cell Biol 1(12):1106-19 PMID:6287218
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCusker JH and Haber JE (1981) Evidence of Chromosomal Breaks near the Mating-Type Locus of SACCHAROMYCES CEREVISIAE That Accompany MATalpha xMATalpha Matings. Genetics 99(3-4):383-403 PMID:17249125
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weiffenbach B and Haber JE (1981) Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae. Mol Cell Biol 1(6):522-34 PMID:6765605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1980) Mutations preventing transpositions of yeast mating type alleles. Proc Natl Acad Sci U S A 77(5):2824-8 PMID:6248869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1980) Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell 22(1 Pt 1):277-89 PMID:6253081
    • SGD Paper
    • DOI full text
    • PubMed
  • Mascioli DW and Haber JE (1980) A CIS-Acting Mutation within the MATa Locus of SACCHAROMYCES CEREVISIAE That Prevents Efficient Homothallic Mating-Type Switching. Genetics 94(2):341-60 PMID:17249002
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pearson NJ and Haber JE (1980) Changes in regulation of ribosomal protein synthesis during vegetative growth and sporulation of Saccharomyces cerevisiae. J Bacteriol 143(3):1411-9 PMID:6997272
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE and George JP (1979) A mutation that permits the expression of normally silent copies of mating-type information in Saccharomyces cerevisiae. Genetics 93(1):13-35 PMID:16118901
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Remer S, et al. (1979) Suppressor of deoxythmidine monophosphate uptake in Saccharomyces cerevisiae. J Bacteriol 138(2):638-41 PMID:374400
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garvik B and Haber JE (1978) New cytoplasmic genetic element that controls 20S RNA synthesis during sporulation in yeast. J Bacteriol 134(1):261-9 PMID:348682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liras P, et al. (1978) Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics 88(4 Pt 1):651-71 PMID:17176533
    • SGD Paper
    • PMC full text
    • PubMed
  • Haber JE and Garvik B (1977) A new gene affecting the efficiency of mating-type interconversions in homothallic strains of Saccharomyces cerevisiae. Genetics 87(1):33-50 PMID:17176530
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pearson NJ and Haber JE (1977) Changes in regulation of ribosome synthesis during different stages of the life cycle of Saccharomyces cerevisiae. Mol Gen Genet 158(1):81-91 PMID:342911
    • SGD Paper
    • DOI full text
    • PubMed
  • Kee SG and Haber JE (1975) Cell cycle-dependent induction of mutations along a yeast chromosome. Proc Natl Acad Sci U S A 72(3):1179-83 PMID:1093167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE (1974) Bisexual mating behavior in a diploid of Saccharomyces cerevisiae: evidence for genetically controlled non-random chromosome loss during vegetative growth. Genetics 78(3):843-58 PMID:4615978
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wejksnora PJ and Haber JE (1974) Methionine-dependent synthesis of ribosomal ribonucleic acid during sporulation and vegetative growth of Saccharomyces cerevisiae. J Bacteriol 120(3):1344-55 PMID:4612017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haber JE, et al. (1972) Colcemid inhibition of cell growth and the characterization of a colcemid-binding activity in Saccharomyces cerevisiae. J Cell Biol 55(2):355-67 PMID:4561943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top