AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Buratowski S
  • References

Author: Buratowski S


References 115 references


No citations for this author.

Download References (.nbib)

  • Ficarro SB, et al. (2025) Leveraging HILIC/ERLIC separations for online nanoscale LC-MS/MS analysis of phosphopeptide isoforms from RNA polymerase II C-terminal domain. J Chromatogr B Analyt Technol Biomed Life Sci 1257:124560 PMID:40158465
    • SGD Paper
    • DOI full text
    • PubMed
  • Jeon J, et al. (2025) Single-molecule analysis of transcription activation: dynamics of SAGA coactivator recruitment. Nat Struct Mol Biol 32(4):675-686 PMID:39809941
    • SGD Paper
    • DOI full text
    • PubMed
  • Baek I, et al. (2022) A set of Saccharomyces cerevisiae integration vectors for fluorescent dye labeling of proteins. G3 (Bethesda) 12(10) PMID:35944214
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Joo YJ and Buratowski S (2022) Gds1 Interacts with NuA4 To Promote H4 Acetylation at Ribosomal Protein Genes. Mol Cell Biol 42(1):e0037321 PMID:34694912
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baek I, et al. (2021) Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol Cell 81(17):3576-3588.e6 PMID:34384542
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bae HJ, et al. (2020) The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat Commun 11(1):2181 PMID:32358498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosen GA, et al. (2020) Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription. Proc Natl Acad Sci U S A 117(51):32348-32357 PMID:33293419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chun Y, et al. (2019) Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker In Vivo. Mol Cell Biol 39(15) PMID:31085683
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Joo YJ, et al. (2019) In vitro assembly and proteomic analysis of RNA polymerase II complexes. Methods 159-160:96-104 PMID:30844430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Joo YJ, et al. (2019) In vitro analysis of RNA polymerase II elongation complex dynamics. Genes Dev 33(9-10):578-589 PMID:30846429
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neurohr GE, et al. (2019) Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell 176(5):1083-1097.e18 PMID:30739799
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2019) Identification of Three Sequence Motifs in the Transcription Termination Factor Sen1 that Mediate Direct Interactions with Nrd1. Structure 27(7):1156-1161.e4 PMID:31104813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee BB, et al. (2018) Rpd3L HDAC links H3K4me3 to transcriptional repression memory. Nucleic Acids Res 46(16):8261-8274 PMID:29982589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mischo HE, et al. (2018) Cell-Cycle Modulation of Transcription Termination Factor Sen1. Mol Cell 70(2):312-326.e7 PMID:29656924
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oliete-Calvo P, et al. (2018) A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 19(11) PMID:30249596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • du Mee DJM, et al. (2018) Efficient termination of nuclear lncRNA transcription promotes mitochondrial genome maintenance. Elife 7 PMID:29504936
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Joo YJ, et al. (2017) Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 31(21):2162-2174 PMID:29203645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soares LM, et al. (2017) Determinants of Histone H3K4 Methylation Patterns. Mol Cell 68(4):773-785.e6 PMID:29129639
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Woo H, et al. (2017) Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med 49(4):e326 PMID:28450734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim JH, et al. (2016) Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun 7:13534 PMID:27892458
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suh H, et al. (2016) Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II. Mol Cell 61(2):297-304 PMID:26799764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marquardt S, et al. (2014) A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157(7):1712-23 PMID:24949978
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soares LM, et al. (2014) Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns. Cell Rep 6(6):961-972 PMID:24613354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hazelbaker DZ, et al. (2013) Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Mol Cell 49(1):55-66 PMID:23177741
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heo DH, et al. (2013) The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem 288(51):36676-90 PMID:24196955
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soares LM and Buratowski S (2013) Histone Crosstalk: H2Bub and H3K4 Methylation. Mol Cell 49(6):1019-20 PMID:23541037
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suh H, et al. (2013) The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits. Mol Cell 51(6):850-8 PMID:24035501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buratowski S (2012) Gene expression: transcription initiation unwrapped. Nature 483(7389):286-7 PMID:22422261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim T, et al. (2012) Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150(6):1158-69 PMID:22959268
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Radman-Livaja M, et al. (2012) A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 8(7):e1002811 PMID:22807688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sikorski TW, et al. (2012) Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters. J Biol Chem 287(42):35397-35408 PMID:22902623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soares LM and Buratowski S (2012) Yeast Swd2 is essential because of antagonism between Set1 histone methyltransferase complex and APT (associated with Pta1) termination factor. J Biol Chem 287(19):15219-31 PMID:22431730
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weiner A, et al. (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10(7):e1001369 PMID:22912562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Werven FJ, et al. (2012) Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150(6):1170-81 PMID:22959267
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lenstra TL, et al. (2011) The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42(4):536-49 PMID:21596317
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marquardt S, et al. (2011) Distinct RNA degradation pathways and 3' extensions of yeast non-coding RNA species. Transcription 2(3):145-154 PMID:21826286
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sikorski TW, et al. (2011) Sub1 and RPA associate with RNA polymerase II at different stages of transcription. Mol Cell 44(3):397-409 PMID:22055186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Terzi N, et al. (2011) H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell Biol 31(17):3569-83 PMID:21709022
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buratowski S and Kim T (2010) The role of cotranscriptional histone methylations. Cold Spring Harb Symp Quant Biol 75:95-102 PMID:21447819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dermody JL and Buratowski S (2010) Leo1 subunit of the yeast paf1 complex binds RNA and contributes to complex recruitment. J Biol Chem 285(44):33671-9 PMID:20732871
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim TS, et al. (2010) RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biol 11(7):R75 PMID:20637075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lunde BM, et al. (2010) Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol 17(10):1195-201 PMID:20818393
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ahn SH, et al. (2009) Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 28(3):205-12 PMID:19131970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson A, et al. (2009) Reconstitution of heterochromatin-dependent transcriptional gene silencing. Mol Cell 35(6):769-81 PMID:19782027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim M, et al. (2009) Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem 284(39):26421-6 PMID:19679665
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim T and Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 137(2):259-72 PMID:19379692
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sikorski TW and Buratowski S (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21(3):344-51 PMID:19411170
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buratowski S (2008) Transcription. Gene expression--where to start? Science 322(5909):1804-5 PMID:19095933
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deka P, et al. (2008) Structure of the yeast SR protein Npl3 and Interaction with mRNA 3'-end processing signals. J Mol Biol 375(1):136-50 PMID:18022637
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dermody JL, et al. (2008) Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PLoS One 3(9):e3273 PMID:18818768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Runner VM, et al. (2008) The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3' processing factors. Mol Cell Biol 28(6):1883-91 PMID:18195044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vasiljeva L, et al. (2008) The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15(8):795-804 PMID:18660819
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Vasiljeva L, et al. (2008) Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell 29(3):313-23 PMID:18280237
    • SGD Paper
    • DOI full text
    • PubMed
  • Bucheli ME, et al. (2007) Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. RNA 13(10):1756-64 PMID:17684230
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dion MF, et al. (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315(5817):1405-8 PMID:17347438
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim T and Buratowski S (2007) Two Saccharomyces cerevisiae JmjC domain proteins demethylate histone H3 Lys36 in transcribed regions to promote elongation. J Biol Chem 282(29):20827-35 PMID:17525156
    • SGD Paper
    • DOI full text
    • PubMed
  • Keogh MC, et al. (2006) A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439(7075):497-501 PMID:16299494
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Keogh MC, et al. (2006) The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 20(6):660-5 PMID:16543219
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim M, et al. (2006) Distinct pathways for snoRNA and mRNA termination. Mol Cell 24(5):723-734 PMID:17157255
    • SGD Paper
    • DOI full text
    • PubMed
  • Vasiljeva L and Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. Mol Cell 21(2):239-48 PMID:16427013
    • SGD Paper
    • DOI full text
    • PubMed
  • Voynov V, et al. (2006) Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 103(39):14423-8 PMID:16983072
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bucheli ME and Buratowski S (2005) Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J 24(12):2150-60 PMID:15902270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Buratowski S (2005) Connections between mRNA 3' end processing and transcription termination. Curr Opin Cell Biol 17(3):257-61 PMID:15901494
    • SGD Paper
    • DOI full text
    • PubMed
  • Keogh MC, et al. (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593-605 PMID:16286008
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim M, et al. (2005) corrigendum: The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 433(7026):661
    • SGD Paper
  • Liu CL, et al. (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10):e328 PMID:16122352
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ahn SH, et al. (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 13(1):67-76 PMID:14731395
    • SGD Paper
    • DOI full text
    • PubMed
  • Auty R, et al. (2004) Purification of active TFIID from Saccharomyces cerevisiae. Extensive promoter contacts and co-activator function. J Biol Chem 279(48):49973-81 PMID:15448131
    • SGD Paper
    • DOI full text
    • PubMed
  • Keogh MC and Buratowski S (2004) Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae. Methods Mol Biol 257:1-16 PMID:14769992
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim M, et al. (2004) Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J 23(2):354-64 PMID:14739930
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim M, et al. (2004) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432(7016):517-22 PMID:15565157
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Krogan NJ, et al. (2004) Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16(6):1027-34 PMID:15610744
    • SGD Paper
    • DOI full text
    • PubMed
  • Krogan NJ, et al. (2004) Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci U S A 101(37):13513-8 PMID:15353583
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Sawa C, et al. (2004) Bromodomain factor 1 (Bdf1) is phosphorylated by protein kinase CK2. Mol Cell Biol 24(11):4734-42 PMID:15143168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keogh MC, et al. (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23(19):7005-18 PMID:12972617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krogan NJ, et al. (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6):1565-76 PMID:14690608
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Krogan NJ, et al. (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207-18 PMID:12773564
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matangkasombut O and Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353-63 PMID:12620224
    • SGD Paper
    • DOI full text
    • PubMed
  • Nedea E, et al. (2003) Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem 278(35):33000-10 PMID:12819204
    • SGD Paper
    • DOI full text
    • PubMed
  • Takagi T, et al. (2003) The Caenorhabditis elegans mRNA 5'-capping enzyme. In vitro and in vivo characterization. J Biol Chem 278(16):14174-84 PMID:12576476
    • SGD Paper
    • DOI full text
    • PubMed
  • Buratowski RM, et al. (2002) Interdependent interactions between TFIIB, TATA binding protein, and DNA. Mol Cell Biol 22(24):8735-43 PMID:12446790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keogh MC, et al. (2002) Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol Cell Biol 22(5):1288-97 PMID:11839796
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krogan NJ, et al. (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22(20):6979-92 PMID:12242279
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takagi T, et al. (2002) Divergent subunit interactions among fungal mRNA 5'-capping machineries. Eukaryot Cell 1(3):448-57 PMID:12455993
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cho EJ, et al. (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15(24):3319-29 PMID:11751637
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Selleck W, et al. (2001) A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat Struct Biol 8(8):695-700 PMID:11473260
    • SGD Paper
    • DOI full text
    • PubMed
  • Buratowski S (2000) Snapshots of RNA polymerase II transcription initiation. Curr Opin Cell Biol 12(3):320-5 PMID:10801469
    • SGD Paper
    • DOI full text
    • PubMed
  • Komarnitsky P, et al. (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14(19):2452-60 PMID:11018013
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matangkasombut O, et al. (2000) Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14(8):951-62 PMID:10783167
    • SGD Paper
    • PMC full text
    • PubMed
  • Rodriguez CR, et al. (2000) Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 20(1):104-12 PMID:10594013
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takase Y, et al. (2000) The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Mol Cell Biol 20(24):9307-16 PMID:11094081
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cho EJ and Buratowski S (1999) Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 274(36):25807-13 PMID:10464320
    • SGD Paper
    • DOI full text
    • PubMed
  • Komarnitsky PB, et al. (1999) TFIID-specific yeast TAF40 is essential for the majority of RNA polymerase II-mediated transcription in vivo. Genes Dev 13(19):2484-9 PMID:10521393
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morehouse H, et al. (1999) The importin/karyopherin Kap114 mediates the nuclear import of TATA-binding protein. Proc Natl Acad Sci U S A 96(22):12542-7 PMID:10535958
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodriguez CR, et al. (1999) A Saccharomyces cerevisiae RNA 5'-triphosphatase related to mRNA capping enzyme. Nucleic Acids Res 27(10):2181-8 PMID:10219091
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cho EJ, et al. (1998) Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain. Genes Dev 12(22):3482-7 PMID:9832501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Michel B, et al. (1998) Histone-like TAFs are essential for transcription in vivo. Mol Cell 2(5):663-73 PMID:9844638
    • SGD Paper
    • DOI full text
    • PubMed
  • Wada T, et al. (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12(3):343-56 PMID:9450929
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cho EJ, et al. (1997) mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 11(24):3319-26 PMID:9407025
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuldell NH and Buratowski S (1997) Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions. Mol Cell Biol 17(9):5288-98 PMID:9271406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fresco LD and Buratowski S (1996) Conditional mutants of the yeast mRNA capping enzyme show that the cap enhances, but is not required for, mRNA splicing. RNA 2(6):584-96 PMID:8718687
    • SGD Paper
    • PMC full text
    • PubMed
  • Moqtaderi Z, et al. (1996) Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci U S A 93(25):14654-8 PMID:8962109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matsui P, et al. (1995) An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. Nucleic Acids Res 23(5):767-72 PMID:7708491
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Z, et al. (1995) The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol Cell Biol 15(4):2288-93 PMID:7891722
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fresco LD and Buratowski S (1994) Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases. Proc Natl Acad Sci U S A 91(14):6624-8 PMID:8022828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buratowski S and Zhou H (1993) Functional domains of transcription factor TFIIB. Proc Natl Acad Sci U S A 90(12):5633-7 PMID:8516312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feaver WJ, et al. (1993) Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75(7):1379-87 PMID:8269516
    • SGD Paper
    • DOI full text
    • PubMed
  • Buratowski S and Zhou H (1992) A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71(2):221-30 PMID:1423590
    • SGD Paper
    • DOI full text
    • PubMed
  • Buratowski S and Zhou H (1992) Transcription factor IID mutants defective for interaction with transcription factor IIA. Science 255(5048):1130-2 PMID:1546314
    • SGD Paper
    • DOI full text
    • PubMed
  • Koleske AJ, et al. (1992) A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69(5):883-94 PMID:1591782
    • SGD Paper
    • DOI full text
    • PubMed
  • Buratowski S, et al. (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56(4):549-61 PMID:2917366
    • SGD Paper
    • DOI full text
    • PubMed
  • Hahn S, et al. (1989) Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58(6):1173-81 PMID:2550146
    • SGD Paper
    • DOI full text
    • PubMed
  • Hahn S, et al. (1989) Identification of a yeast protein homologous in function to the mammalian general transcription factor, TFIIA. EMBO J 8(11):3379-82 PMID:2684641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hahn S, et al. (1989) Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc Natl Acad Sci U S A 86(15):5718-22 PMID:2569738
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buratowski S, et al. (1988) Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334(6177):37-42 PMID:3290687
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top