Regmi P, et al. (2024) A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study. Metab Eng Commun 19:e00245 PMID:39072283
Schäfer KJ, et al. (2024) Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid. Biotechnol Biofuels Bioprod 17(1):141 PMID:39633477
Garces Daza F, et al. (2023) An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 16(1):71 PMID:37101299
Tamayo Rojas SA, et al. (2022) A yeast-based in vivo assay system for analyzing efflux of sugars mediated by glucose and xylose transporters. FEMS Yeast Res 21(1) PMID:35918180
Baumann L, et al. (2021) High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in Saccharomyces cerevisiae. ACS Synth Biol 10(5):1077-1086 PMID:33979526
Bruni F, et al. (2021) Subcellular Localization of Fad1p in Saccharomyces cerevisiae: A Choice at Post-Transcriptional Level? Life (Basel) 11(9) PMID:34575116
Rojas SAT, et al. (2021) Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high pentose transport capacity. Sci Rep 11(1):24404 PMID:34937866
Tamayo Rojas SA, et al. (2021) Glucose-induced internalization of the S. cerevisiae galactose permease Gal2 is dependent on phosphorylation and ubiquitination of its aminoterminal cytoplasmic tail. FEMS Yeast Res 21(3) PMID:33791789
Wernig F, et al. (2021) Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol Bioeng 118(8):3046-3057 PMID:34003487
Hitschler J, et al. (2020) Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Sci Rep 10(1):9962 PMID:32561880
Reifenrath M, et al. (2020) Artificial ER-Derived Vesicles as Synthetic Organelles for in Vivo Compartmentalization of Biochemical Pathways. ACS Synth Biol 9(11):2909-2916 PMID:33074655
Wernig F, et al. (2020)De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metab Eng Commun 10:e00111 PMID:31867212
Wernig F, et al. (2020) Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Sci Rep 10(1):9780 PMID:32555375
Tiukova IA, et al. (2019) Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 366(17) PMID:31665273
Wess J, et al. (2019) Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnol Biofuels 12:173 PMID:31303893
Baumann L, et al. (2018) A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synth Biol 7(11):2640-2646 PMID:30338986
Brückner C, et al. (2018) An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res 18(2) PMID:29462295
Henritzi S, et al. (2018) An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnol Biofuels 11:150 PMID:29881455
Reifenrath M and Boles E (2018) Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng 45:246-254 PMID:29330068
Reifenrath M and Boles E (2018) A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Sci Rep 8(1):11985 PMID:30097598
Reifenrath M, et al. (2018) Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production. Metab Eng Commun 7:e00079 PMID:30370221
Gottardi M, et al. (2017) Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Res 17(4) PMID:28582489
Thomik T, et al. (2017) An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat Chem Biol 13(11):1158-1163 PMID:28869594
Weber HE, et al. (2017) Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 83(10) PMID:28283523
Jordan P, et al. (2016) Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502 PMID:26996892
Schadeweg V and Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44 PMID:26913077
Generoso WC, et al. (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1-7 PMID:25286420
Solis-Escalante D, et al. (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2) PMID:25673752
Benisch F and Boles E (2014) The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 171:45-55 PMID:24333129
Farwick A, et al. (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111(14):5159-64 PMID:24706835
Giancaspero TA, et al. (2014) Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1. Biomed Res Int 2014:101286 PMID:24895546
Linck A, et al. (2014) On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae. FEMS Yeast Res 14(3):389-98 PMID:24456572
Biswas C, et al. (2013) Functional characterization of the hexose transporter Hxt13p: an efflux pump that mediates resistance to miltefosine in yeast. Fungal Genet Biol 61:23-32 PMID:24076076
Demeke MM, et al. (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89 PMID:23800147
Ter Veld F, et al. (2013) Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p. Appl Microbiol Biotechnol 97(19):8537-46 PMID:23318835
Brat D, et al. (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):65 PMID:22954227
Oreb M, et al. (2012) Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 3(6):347-51 PMID:22892590
Scarcelli JJ, et al. (2012) Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase. FEMS Yeast Res 12(3):305-16 PMID:22151002
Subtil T and Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14 PMID:22424089
Torbensen R, et al. (2012) Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae. PLoS One 7(7):e41272 PMID:22844449
Weber C, et al. (2012) Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8421-30 PMID:23001678
Subtil T and Boles E (2011) Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 4:38 PMID:21992610
Sydor T, et al. (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76(10):3361-3 PMID:20348297
Weber C, et al. (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303-15 PMID:20535464
Brat D, et al. (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304-11 PMID:19218403
Kasahara T, et al. (2009) Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. Biochim Biophys Acta 1788(5):1051-5 PMID:19366592
Giancaspero TA, et al. (2008) Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae--involvement of the mitochondrial FAD transporter, Flx1p. FEBS J 275(6):1103-17 PMID:18279395
Wiedemann B and Boles E (2008) Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74(7):2043-50 PMID:18263741
Giancaspero TA, et al. (2007) Expression of succinate dehydrogenase flavoprotein subunit in saccharomyces cerevisiae studied by lacZ reporter strategy. Effect of FLX1 deletion. Ital J Biochem 56(4):319-22 PMID:19192635
Karhumaa K, et al. (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18 PMID:16606456
Liu Z, et al. (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424-30 PMID:17064664
Bafunno V, et al. (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279(1):95-102 PMID:14555654
Elbing K, et al. (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70(9):5323-30 PMID:15345416
Makuc J, et al. (2004) Co-expression of a mammalian accessory trafficking protein enables functional expression of the rat MCT1 monocarboxylate transporter in Saccharomyces cerevisiae. FEMS Yeast Res 4(8):795-801 PMID:15450186
Sonderegger M, et al. (2004) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87(1):90-8 PMID:15211492
Becker J and Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144-50 PMID:12839792
Diezemann A and Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43(4):281-8 PMID:12677461
Buziol S, et al. (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2(3):283-91 PMID:12702277
Hamacher T, et al. (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology (Reading) 148(Pt 9):2783-2788 PMID:12213924
Krampe S and Boles E (2002) Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease. FEBS Lett 513(2-3):193-6 PMID:11904149
Maier A, et al. (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2(4):539-50 PMID:12702270
Dlugai S, et al. (2001) Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett 505(3):389-92 PMID:11576534
Makuc J, et al. (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131-43 PMID:11536335
Rolland F, et al. (2001) The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1(1):33-45 PMID:12702461
Eliasson A, et al. (2000) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(4):376-82 PMID:10803891
Rolland F, et al. (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38(2):348-58 PMID:11069660
Schulte F, et al. (2000) The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182(2):540-2 PMID:10629208
Iraqui I, et al. (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19(2):989-1001 PMID:9891035
Weierstall T, et al. (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31(3):871-83 PMID:10048030
Wieczorke R, et al. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464(3):123-8 PMID:10618490
Boles E, et al. (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180(11):2875-82 PMID:9603875
Krampe S, et al. (1998) Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441(3):343-7 PMID:9891967
Boles E, et al. (1997) Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J Bacteriol 179(9):2987-93 PMID:9139918
Müller S, et al. (1997) Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology (Reading) 143 ( Pt 9):3055-3061 PMID:9308187
Reifenberger E, et al. (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245(2):324-33 PMID:9151960
Boles E, et al. (1996) Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol 20(1):65-76 PMID:8861205
Müller S, et al. (1996) A two-hybrid system analysis shows interactions between 6-phosphofructo-1-kinase and 6-phosphofructo-2-kinase but not between other glycolytic enzymes of the yeast Saccharomyces cerevisiae. Eur J Biochem 236(2):626-31 PMID:8612638
Miosga T, et al. (1995) Sequence analysis of a 33.1 kb fragment from the left arm of Saccharomyces cerevisiae chromosome X, including putative proteins with leucine zippers, a fungal Zn(II)2-Cys6 binuclear cluster domain and a putative alpha 2-SCB-alpha 2 binding site. Yeast 11(7):681-9 PMID:7483841
Müller S, et al. (1995) Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol 177(15):4517-9 PMID:7635834
Baur A, et al. (1994) Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast 10(1):131 PMID:8203148
Boles E and Zimmermann FK (1994) Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae. Mol Gen Genet 243(4):363-8 PMID:8202080
Hofmann M, et al. (1994) Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem 221(2):741-7 PMID:8174553
Miosga T, et al. (1994) Sequence and function analysis of a 9.74 kb fragment of Saccharomyces cerevisiae chromosome X including the BCK1 gene. Yeast 10(11):1481-8 PMID:7871887
Baur A, et al. (1993) Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast 9(3):289-93 PMID:8488729
Boles E, et al. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem 217(1):469-77 PMID:7901008
Schaaff-Gerstenschläger I, et al. (1993) Sequence and function analysis of a 4.3 kb fragment of Saccharomyces cerevisiae chromosome II including three open reading frames. Yeast 9(8):915-21 PMID:8212898
Corominas J, et al. (1992) Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase (pgil) disruption mutant. FEBS Lett 310(2):182-6 PMID:1397270