AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Boles E
  • References

Author: Boles E


References 106 references


No citations for this author.

Download References (.nbib)

  • Regmi P, et al. (2024) A comparative analysis of NADPH supply strategies in Saccharomyces cerevisiae: Production of d-xylitol from d-xylose as a case study. Metab Eng Commun 19:e00245 PMID:39072283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schäfer KJ, et al. (2024) Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid. Biotechnol Biofuels Bioprod 17(1):141 PMID:39633477
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garces Daza F, et al. (2023) An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 16(1):71 PMID:37101299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lehner S and Boles E (2023) Development of vitamin B12 dependency in Saccharomyces cerevisiae. FEMS Yeast Res 23 PMID:36941127
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamayo Rojas SA, et al. (2022) A yeast-based in vivo assay system for analyzing efflux of sugars mediated by glucose and xylose transporters. FEMS Yeast Res 21(1) PMID:35918180
    • SGD Paper
    • DOI full text
    • PubMed
  • Baumann L, et al. (2021) Transcriptomic response of Saccharomyces cerevisiae to octanoic acid production. FEMS Yeast Res 21(2) PMID:33599754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baumann L, et al. (2021) High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in Saccharomyces cerevisiae. ACS Synth Biol 10(5):1077-1086 PMID:33979526
    • SGD Paper
    • DOI full text
    • PubMed
  • Bruni F, et al. (2021) Subcellular Localization of Fad1p in Saccharomyces cerevisiae: A Choice at Post-Transcriptional Level? Life (Basel) 11(9) PMID:34575116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rojas SAT, et al. (2021) Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high pentose transport capacity. Sci Rep 11(1):24404 PMID:34937866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tamayo Rojas SA, et al. (2021) Glucose-induced internalization of the S. cerevisiae galactose permease Gal2 is dependent on phosphorylation and ubiquitination of its aminoterminal cytoplasmic tail. FEMS Yeast Res 21(3) PMID:33791789
    • SGD Paper
    • DOI full text
    • PubMed
  • Wernig F, et al. (2021) Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol Bioeng 118(8):3046-3057 PMID:34003487
    • SGD Paper
    • DOI full text
    • PubMed
  • Hitschler J, et al. (2020) Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Sci Rep 10(1):9962 PMID:32561880
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reifenrath M, et al. (2020) Artificial ER-Derived Vesicles as Synthetic Organelles for in Vivo Compartmentalization of Biochemical Pathways. ACS Synth Biol 9(11):2909-2916 PMID:33074655
    • SGD Paper
    • DOI full text
    • PubMed
  • Wernig F, et al. (2020) De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metab Eng Commun 10:e00111 PMID:31867212
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wernig F, et al. (2020) Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Sci Rep 10(1):9780 PMID:32555375
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tiukova IA, et al. (2019) Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 366(17) PMID:31665273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wess J, et al. (2019) Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnol Biofuels 12:173 PMID:31303893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baumann L, et al. (2018) A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synth Biol 7(11):2640-2646 PMID:30338986
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E and Oreb M (2018) A Growth-Based Screening System for Hexose Transporters in Yeast. Methods Mol Biol 1713:123-135 PMID:29218522
    • SGD Paper
    • DOI full text
    • PubMed
  • Brückner C, et al. (2018) An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res 18(2) PMID:29462295
    • SGD Paper
    • DOI full text
    • PubMed
  • Henritzi S, et al. (2018) An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnol Biofuels 11:150 PMID:29881455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reifenrath M and Boles E (2018) Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng 45:246-254 PMID:29330068
    • SGD Paper
    • DOI full text
    • PubMed
  • Reifenrath M and Boles E (2018) A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Sci Rep 8(1):11985 PMID:30097598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reifenrath M, et al. (2018) Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production. Metab Eng Commun 7:e00079 PMID:30370221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gajewski J, et al. (2017) Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 8:14650 PMID:28281527
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gottardi M, et al. (2017) Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Res 17(4) PMID:28582489
    • SGD Paper
    • DOI full text
    • PubMed
  • Thomik T, et al. (2017) An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat Chem Biol 13(11):1158-1163 PMID:28869594
    • SGD Paper
    • DOI full text
    • PubMed
  • Weber HE, et al. (2017) Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 83(10) PMID:28283523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bruder S, et al. (2016) Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae. Microb Cell Fact 15(1):127 PMID:27455954
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Generoso WC, et al. (2016) Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae. J Microbiol Methods 127:203-205 PMID:27327211
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordan P, et al. (2016) Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502 PMID:26996892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schadeweg V and Boles E (2016) n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnol Biofuels 9:44 PMID:26913077
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Generoso WC, et al. (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1-7 PMID:25286420
    • SGD Paper
    • DOI full text
    • PubMed
  • Solis-Escalante D, et al. (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2) PMID:25673752
    • SGD Paper
    • DOI full text
    • PubMed
  • Benisch F and Boles E (2014) The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 171:45-55 PMID:24333129
    • SGD Paper
    • DOI full text
    • PubMed
  • Farwick A, et al. (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111(14):5159-64 PMID:24706835
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Giancaspero TA, et al. (2014) Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1. Biomed Res Int 2014:101286 PMID:24895546
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Linck A, et al. (2014) On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae. FEMS Yeast Res 14(3):389-98 PMID:24456572
    • SGD Paper
    • DOI full text
    • PubMed
  • Biswas C, et al. (2013) Functional characterization of the hexose transporter Hxt13p: an efflux pump that mediates resistance to miltefosine in yeast. Fungal Genet Biol 61:23-32 PMID:24076076
    • SGD Paper
    • DOI full text
    • PubMed
  • Brat D and Boles E (2013) Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 13(2):241-4 PMID:23279585
    • SGD Paper
    • DOI full text
    • PubMed
  • Demeke MM, et al. (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89 PMID:23800147
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ter Veld F, et al. (2013) Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p. Appl Microbiol Biotechnol 97(19):8537-46 PMID:23318835
    • SGD Paper
    • DOI full text
    • PubMed
  • Brat D, et al. (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):65 PMID:22954227
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oreb M, et al. (2012) Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 3(6):347-51 PMID:22892590
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scarcelli JJ, et al. (2012) Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase. FEMS Yeast Res 12(3):305-16 PMID:22151002
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Subtil T and Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14 PMID:22424089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torbensen R, et al. (2012) Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae. PLoS One 7(7):e41272 PMID:22844449
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weber C, et al. (2012) Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8421-30 PMID:23001678
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Subtil T and Boles E (2011) Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnol Biofuels 4:38 PMID:21992610
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sydor T, et al. (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76(10):3361-3 PMID:20348297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weber C, et al. (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303-15 PMID:20535464
    • SGD Paper
    • DOI full text
    • PubMed
  • Brat D, et al. (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304-11 PMID:19218403
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kasahara T, et al. (2009) Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. Biochim Biophys Acta 1788(5):1051-5 PMID:19366592
    • SGD Paper
    • DOI full text
    • PubMed
  • Giancaspero TA, et al. (2008) Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae--involvement of the mitochondrial FAD transporter, Flx1p. FEBS J 275(6):1103-17 PMID:18279395
    • SGD Paper
    • DOI full text
    • PubMed
  • Wiedemann B and Boles E (2008) Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74(7):2043-50 PMID:18263741
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Giancaspero TA, et al. (2007) Expression of succinate dehydrogenase flavoprotein subunit in saccharomyces cerevisiae studied by lacZ reporter strategy. Effect of FLX1 deletion. Ital J Biochem 56(4):319-22 PMID:19192635
    • SGD Paper
    • PubMed
  • Karhumaa K, et al. (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18 PMID:16606456
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Z, et al. (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424-30 PMID:17064664
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bafunno V, et al. (2004) Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 279(1):95-102 PMID:14555654
    • SGD Paper
    • DOI full text
    • PubMed
  • Elbing K, et al. (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70(9):5323-30 PMID:15345416
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Z, et al. (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279(17):17312-8 PMID:14966117
    • SGD Paper
    • DOI full text
    • PubMed
  • Makuc J, et al. (2004) Co-expression of a mammalian accessory trafficking protein enables functional expression of the rat MCT1 monocarboxylate transporter in Saccharomyces cerevisiae. FEMS Yeast Res 4(8):795-801 PMID:15450186
    • SGD Paper
    • DOI full text
    • PubMed
  • Otterstedt K, et al. (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5(5):532-7 PMID:15071495
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sonderegger M, et al. (2004) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87(1):90-8 PMID:15211492
    • SGD Paper
    • DOI full text
    • PubMed
  • Becker J and Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144-50 PMID:12839792
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Diezemann A and Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43(4):281-8 PMID:12677461
    • SGD Paper
    • DOI full text
    • PubMed
  • Ludewig U, et al. (2003) Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 278(46):45603-10 PMID:12952951
    • SGD Paper
    • DOI full text
    • PubMed
  • Buziol S, et al. (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2(3):283-91 PMID:12702277
    • SGD Paper
    • DOI full text
    • PubMed
  • Hamacher T, et al. (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology (Reading) 148(Pt 9):2783-2788 PMID:12213924
    • SGD Paper
    • DOI full text
    • PubMed
  • Krampe S and Boles E (2002) Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease. FEBS Lett 513(2-3):193-6 PMID:11904149
    • SGD Paper
    • DOI full text
    • PubMed
  • Maier A, et al. (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2(4):539-50 PMID:12702270
    • SGD Paper
    • DOI full text
    • PubMed
  • Dlugai S, et al. (2001) Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett 505(3):389-92 PMID:11576534
    • SGD Paper
    • DOI full text
    • PubMed
  • Makuc J, et al. (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131-43 PMID:11536335
    • SGD Paper
    • DOI full text
    • PubMed
  • Milkowski C, et al. (2001) Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol 183(18):5223-9 PMID:11514503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rolland F, et al. (2001) The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1(1):33-45 PMID:12702461
    • SGD Paper
    • DOI full text
    • PubMed
  • Eliasson A, et al. (2000) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(4):376-82 PMID:10803891
    • SGD Paper
    • DOI full text
    • PubMed
  • Rolland F, et al. (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38(2):348-58 PMID:11069660
    • SGD Paper
    • DOI full text
    • PubMed
  • Schulte F, et al. (2000) The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182(2):540-2 PMID:10629208
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Iraqui I, et al. (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19(2):989-1001 PMID:9891035
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lalonde S, et al. (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11(4):707-26 PMID:10213788
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weierstall T, et al. (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31(3):871-83 PMID:10048030
    • SGD Paper
    • DOI full text
    • PubMed
  • Wieczorke R, et al. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464(3):123-8 PMID:10618490
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180(11):2875-82 PMID:9603875
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krampe S, et al. (1998) Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441(3):343-7 PMID:9891967
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E and Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21(1):85-111 PMID:9299703
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1997) Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J Bacteriol 179(9):2987-93 PMID:9139918
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller S, et al. (1997) Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology (Reading) 143 ( Pt 9):3055-3061 PMID:9308187
    • SGD Paper
    • DOI full text
    • PubMed
  • Reifenberger E, et al. (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245(2):324-33 PMID:9151960
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1996) Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol 20(1):65-76 PMID:8861205
    • SGD Paper
    • DOI full text
    • PubMed
  • Galibert F, et al. (1996) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J 15(9):2031-49 PMID:8641269
    • SGD Paper
    • PMC full text
    • PubMed
    • Reference supplement
  • Heinisch JJ, et al. (1996) A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. J Biol Chem 271(27):15928-33 PMID:8663166
    • SGD Paper
    • DOI full text
    • PubMed
  • Müller S, et al. (1996) A two-hybrid system analysis shows interactions between 6-phosphofructo-1-kinase and 6-phosphofructo-2-kinase but not between other glycolytic enzymes of the yeast Saccharomyces cerevisiae. Eur J Biochem 236(2):626-31 PMID:8612638
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1995) S. cerevisiae MPA43 Gene. Unpublished
    • SGD Paper
  • Miosga T, et al. (1995) Sequence analysis of a 33.1 kb fragment from the left arm of Saccharomyces cerevisiae chromosome X, including putative proteins with leucine zippers, a fungal Zn(II)2-Cys6 binuclear cluster domain and a putative alpha 2-SCB-alpha 2 binding site. Yeast 11(7):681-9 PMID:7483841
    • SGD Paper
    • DOI full text
    • PubMed
  • Müller S, et al. (1995) Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol 177(15):4517-9 PMID:7635834
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baur A, et al. (1994) Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast 10(1):131 PMID:8203148
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E and Zimmermann FK (1994) Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae. Mol Gen Genet 243(4):363-8 PMID:8202080
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1994) A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur J Biochem 220(1):83-96 PMID:8119301
    • SGD Paper
    • DOI full text
    • PubMed
  • Feldmann H, et al. (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13(24):5795-809 PMID:7813418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hofmann M, et al. (1994) Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem 221(2):741-7 PMID:8174553
    • SGD Paper
    • DOI full text
    • PubMed
  • Miosga T, et al. (1994) Sequence and function analysis of a 9.74 kb fragment of Saccharomyces cerevisiae chromosome X including the BCK1 gene. Yeast 10(11):1481-8 PMID:7871887
    • SGD Paper
    • DOI full text
    • PubMed
  • Baur A, et al. (1993) Sequence of a 4.8 kb fragment of Saccharomyces cerevisiae chromosome II including three essential open reading frames. Yeast 9(3):289-93 PMID:8488729
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1993) Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast 9(7):761-70 PMID:8368010
    • SGD Paper
    • DOI full text
    • PubMed
  • Boles E, et al. (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem 217(1):469-77 PMID:7901008
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaaff-Gerstenschläger I, et al. (1993) Sequence and function analysis of a 4.3 kb fragment of Saccharomyces cerevisiae chromosome II including three open reading frames. Yeast 9(8):915-21 PMID:8212898
    • SGD Paper
    • DOI full text
    • PubMed
  • Corominas J, et al. (1992) Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase (pgil) disruption mutant. FEBS Lett 310(2):182-6 PMID:1397270
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top