AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Arroyo J
  • References

Author: Arroyo J


References 55 references


No citations for this author.

Download References (.nbib)

  • Pulido V, et al. (2024) mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 436(10):168570 PMID:38604529
    • SGD Paper
    • DOI full text
    • PubMed
  • Cañonero L, et al. (2022) Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Res 1869(4):119209 PMID:34999138
    • SGD Paper
    • DOI full text
    • PubMed
  • Sanz AB, et al. (2022) Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 23(3) PMID:35163713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanz AB, et al. (2022) Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J Fungi (Basel) 8(7) PMID:35887473
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García R, et al. (2021) Poacic acid, a β-1,3-glucan-binding antifungal agent, inhibits cell-wall remodeling and activates transcriptional responses regulated by the cell-wall integrity and high-osmolarity glycerol pathways in yeast. FASEB J 35(9):e21778 PMID:34383971
    • SGD Paper
    • DOI full text
    • PubMed
  • Pujol-Carrion N, et al. (2021) The MAPK Slt2/Mpk1 plays a role in iron homeostasis through direct regulation of the transcription factor Aft1. Biochim Biophys Acta Mol Cell Res 1868(5):118974 PMID:33549702
    • SGD Paper
    • DOI full text
    • PubMed
  • García R, et al. (2019) Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 9(1):3186 PMID:30816278
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García R, et al. (2019) Author Correction: Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 9(1):16650 PMID:31695129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanz AB, et al. (2018) Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. Biochim Biophys Acta Gene Regul Mech 1861(11):1029-1039 PMID:30343693
    • SGD Paper
    • DOI full text
    • PubMed
  • García R, et al. (2017) A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. Sci Rep 7(1):5703 PMID:28720901
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanz AB, et al. (2017) The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 4(1) PMID:29371494
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García R, et al. (2016) Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression. J Cell Sci 129(8):1649-60 PMID:26933180
    • SGD Paper
    • DOI full text
    • PubMed
  • Sanz AB, et al. (2016) Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res 44(15):7159-72 PMID:27112564
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blanco N, et al. (2015) Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS J 282(4):715-31 PMID:25495733
    • SGD Paper
    • DOI full text
    • PubMed
  • García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cabib E and Arroyo J (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11(9):648-55 PMID:23949603
    • SGD Paper
    • DOI full text
    • PubMed
  • Mazáň M, et al. (2013) A novel fluorescence assay and catalytic properties of Crh1 and Crh2 yeast cell wall transglycosylases. Biochem J 455(3):307-18 PMID:23919454
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Peña JM, et al. (2013) Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2. FEBS Lett 587(22):3675-80 PMID:24100139
    • SGD Paper
    • DOI full text
    • PubMed
  • Blanco N, et al. (2012) Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck. J Cell Sci 125(Pt 23):5781-9 PMID:23077181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cabib E, et al. (2012) Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot Cell 11(4):388-400 PMID:22366124
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanz AB, et al. (2012) Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell 23(14):2805-17 PMID:22621902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arias P, et al. (2011) Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: novel insights into diverse MAPK outcomes. BMC Genomics 12:390 PMID:21810245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arroyo J, et al. (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker's yeast. Mol Microbiol 79(6):1529-46 PMID:21231968
    • SGD Paper
    • DOI full text
    • PubMed
  • Ragni E, et al. (2011) The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections. BMC Genomics 12:107 PMID:21320323
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rolli E, et al. (2011) Expression, stability, and replacement of glucan-remodeling enzymes during developmental transitions in Saccharomyces cerevisiae. Mol Biol Cell 22(9):1585-98 PMID:21389112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bermejo C, et al. (2010) Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae. OMICS 14(6):679-88 PMID:20958245
    • SGD Paper
    • DOI full text
    • PubMed
  • Petkova MI, et al. (2010) Mtl1 is required to activate general stress response through Tor1 and Ras2 inhibition under conditions of glucose starvation and oxidative stress. J Biol Chem 285(25):19521-31 PMID:20388713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodríguez-Peña JM, et al. (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27(8):495-502 PMID:20641030
    • SGD Paper
    • DOI full text
    • PubMed
  • Rolli E, et al. (2010) GAS3, a developmentally regulated gene, encodes a highly mannosylated and inactive protein of the Gas family of Saccharomyces cerevisiae. Yeast 27(8):597-610 PMID:20641027
    • SGD Paper
    • DOI full text
    • PubMed
  • Vazquez M, et al. (2010) MARQ: an online tool to mine GEO for experiments with similar or opposite gene expression signatures. Nucleic Acids Res 38(Web Server issue):W228-32 PMID:20513648
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Arroyo J, et al. (2009) Genomics in the detection of damage in microbial systems: cell wall stress in yeast. Clin Microbiol Infect 15 Suppl 1:44-6 PMID:19220354
    • SGD Paper
    • DOI full text
    • PubMed
  • García R, et al. (2009) The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 284(16):10901-11 PMID:19234305
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marín MJ, et al. (2009) Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5. Mol Genet Genomics 281(3):345-59 PMID:19123063
    • SGD Paper
    • DOI full text
    • PubMed
  • Bermejo C, et al. (2008) The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19(3):1113-24 PMID:18184748
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cabib E, et al. (2008) Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283(44):29859-72 PMID:18694928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodriguez-Peña JM, et al. (2008) A yeast strain biosensor to detect cell wall-perturbing agents. J Biotechnol 133(3):311-7 PMID:18055054
    • SGD Paper
    • DOI full text
    • PubMed
  • Arroyo J, et al. (2007) The GPI-anchored Gas and Crh families are fungal antigens. Yeast 24(4):289-96 PMID:17397107
    • SGD Paper
    • DOI full text
    • PubMed
  • Cabib E, et al. (2007) Crh1p and Crh2p are required for the cross-linking of chitin to beta(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63(3):921-35 PMID:17302808
    • SGD Paper
    • DOI full text
    • PubMed
  • Ragni E, et al. (2007) GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 6(2):302-16 PMID:17189486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodríguez-Peña JM, et al. (2005) The 'yeast cell wall chip' - a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. Microbiology (Reading) 151(Pt 7):2241-2249 PMID:16000714
    • SGD Paper
    • DOI full text
    • PubMed
  • García R, et al. (2004) The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279(15):15183-95 PMID:14739279
    • SGD Paper
    • DOI full text
    • PubMed
  • Gómez-Esquer F, et al. (2004) CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae. Microbiology (Reading) 150(Pt 10):3269-80 PMID:15470107
    • SGD Paper
    • DOI full text
    • PubMed
  • Lagorce A, et al. (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278(22):20345-57 PMID:12644457
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Rodriguez-Peña JM, et al. (2002) Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115(Pt 12):2549-58 PMID:12045225
    • SGD Paper
    • DOI full text
    • PubMed
  • de Groot PW, et al. (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2(3):124-42 PMID:18628907
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molina M, et al. (2000) Protein localisation approaches for understanding yeast cell wall biogenesis. Microsc Res Tech 51(6):601-12 PMID:11169861
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodríguez-Peña JM, et al. (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20(9):3245-55 PMID:10757808
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodriguez-Peña JM, et al. (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162(1):155-60 PMID:9595677
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodriguez-Peña JM, et al. (1998) The deletion of six ORFs of unknown function from Saccharomyces cerevisiae chromosome VII reveals two essential genes: YGR195w and YGR198w. Yeast 14(9):853-60 PMID:9818723
    • SGD Paper
    • DOI full text
    • PubMed
  • Arroyo J, et al. (1997) DNA sequence analysis of a 23,002 bp DNA fragment of the right arm of Saccharomyces cerevisiae chromosome VII. Yeast 13(4):357-63 PMID:9133739
    • SGD Paper
    • DOI full text
    • PubMed
  • Tettelin H, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature 387(6632 Suppl):81-4 PMID:9169869
    • SGD Paper
    • PubMed
  • Arroyo J, et al. (1995) The complete sequence of a 9037 bp DNA fragment of the right arm of Saccharomyces cerevisiae chromosome VII. Yeast 11(6):587-91 PMID:7645350
    • SGD Paper
    • DOI full text
    • PubMed
  • Guerreiro P, et al. (1995) The complete sequence of a 9000 bp fragment of the right arm of Saccharomyces cerevisiae chromosome VII contains four previously unknown open reading frames. Yeast 11(11):1087-91 PMID:7502584
    • SGD Paper
    • DOI full text
    • PubMed
  • Martín H, et al. (1993) Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol Gen Genet 241(1-2):177-84 PMID:8232202
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres L, et al. (1991) A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol 5(11):2845-54 PMID:1779770
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top