Literature Help
ARO10 / YDR380W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Yang Q, et al. (2023) Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 8(4):772-783 PMID:38161995
- Bisquert R, et al. (2022) Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microb Biotechnol 15(5):1499-1510 PMID:34689412
- Du Z, et al. (2022) Cat8 Response to Nutritional Changes and Interaction With Ehrlich Pathway Related Factors. Front Microbiol 13:898938 PMID:35783377
- Chen SJ, et al. (2021) Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 118(43) PMID:34663735
- Hassing EJ, et al. (2021) Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 13:e00183 PMID:34584841
- Robinson KP, et al. (2021) Defining intermediates and redundancies in coenzyme Q precursor biosynthesis. J Biol Chem 296:100643 PMID:33862086
- Zhang D, et al. (2021) Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Appl Microbiol Biotechnol 105(9):3635-3648 PMID:33852023
- Zhang W, et al. (2021) Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15. Lett Appl Microbiol 73(6):694-707 PMID:34418130
- Zhou P, et al. (2021) Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid. Appl Microbiol Biotechnol 105(14-15):5809-5819 PMID:34283270
- Zhu L, et al. (2021) Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS One 16(10):e0258180 PMID:34665833
- Li Y, et al. (2020) Optimization of the l-tyrosine metabolic pathway in Saccharomyces cerevisiae by analyzing p-coumaric acid production. 3 Biotech 10(6):258 PMID:32550099
- Valera MJ, et al. (2020) The Mandelate Pathway, an Alternative to the Phenylalanine Ammonia Lyase Pathway for the Synthesis of Benzenoids in Ascomycete Yeasts. Appl Environ Microbiol 86(17) PMID:32561586
- Valera MJ, et al. (2020) Genetic and transcriptomic evidences suggest ARO10 genes are involved in benzenoid biosynthesis by yeast. Yeast 37(9-10):427-435 PMID:32638443
- Parapouli M, et al. (2019) Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes' activities with the produced flavour compounds. J Biol Res (Thessalon) 26:5 PMID:31406688
- Sun ZG, et al. (2019) Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Appl Microbiol Biotechnol 103(12):4917-4929 PMID:31073877
- Spinka M, et al. (2017) Significance of Individual Residues at the Regulatory Site of Yeast Pyruvate Decarboxylase for Allosteric Substrate Activation. Biochemistry 56(9):1285-1298 PMID:28170226
- Wang Z, et al. (2017) Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44(1):129-139 PMID:27770224
- Akdoğan E, et al. (2016) Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 11(1):e0146511 PMID:26751567
- Shen L, et al. (2016) Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose. J Biosci Bioeng 122(1):34-9 PMID:26975754
- Stefely JA, et al. (2016) Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat Biotechnol 34(11):1191-1197 PMID:27669165
- Stribny J, et al. (2016) Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microb Cell Fact 15:51 PMID:26971319
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Yu AQ, et al. (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36-43 PMID:26721212
- Avbelj M, et al. (2015) Quorum-Sensing Kinetics in Saccharomyces cerevisiae: A Symphony of ARO Genes and Aromatic Alcohols. J Agric Food Chem 63(38):8544-50 PMID:26367540
- Galanie S, et al. (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095-100 PMID:26272907
- Gold ND, et al. (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Fact 14:73 PMID:26016674
- Rodriguez A, et al. (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181-8 PMID:26292030
- Romagnoli G, et al. (2015) Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast 32(1):29-45 PMID:24733517
- Yin S, et al. (2015) Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae. FEMS Microbiol Lett 362(5) PMID:25743068
- Kim B, et al. (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111(1):115-24 PMID:23836015
- Lee K and Hahn JS (2013) Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Mol Microbiol 88(6):1120-34 PMID:23651256
- Lee K, et al. (2013) Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae. Biochem Biophys Res Commun 438(1):43-7 PMID:23860270
- Kondo T, et al. (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159(1-2):32-7 PMID:22342368
- Romagnoli G, et al. (2012) Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78(21):7538-48 PMID:22904058
- Kneen MM, et al. (2011) Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 278(11):1842-53 PMID:21501384
- Hwang JY, et al. (2009) Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol Bioeng 102(5):1323-9 PMID:19016485
- Perpète P, et al. (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):48-56 PMID:16423070
- Vuralhan Z, et al. (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276-84 PMID:15933030
- Dickinson JR, et al. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278(10):8028-34 PMID:12499363
- Vuralhan Z, et al. (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69(8):4534-41 PMID:12902239
- Sergienko EA and Jordan F (2002) Yeast pyruvate decarboxylase tetramers can dissociate into dimers along two interfaces. Hybrids of low-activity D28A (or D28N) and E477Q variants, with substitution of adjacent active center acidic groups from different subunits, display restored activity. Biochemistry 41(19):6164-9 PMID:11994012
- Dickinson JR, et al. (2000) An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275(15):10937-42 PMID:10753893
- Iraqui I, et al. (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19(5):3360-71 PMID:10207060
- Shevchenko A, et al. (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93(25):14440-5 PMID:8962070
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Brewster A, et al. (2025) Inhibition Control by Continuous Extractive Fermentation Enhances De Novo 2-Phenylethanol Production by Yeast. Biotechnol Bioeng 122(2):287-297 PMID:39460388
- Chen L, et al. (2025) Transcriptomic Identification of Core Regulatory Genes for Higher Alcohol Production in Saccharomyces cerevisiae at Different Sugar Concentrations in Wine Fermentation. Foods 14(9) PMID:40361559
- Han Y, et al. (2025) Construction and Optimization of Engineered Saccharomyces cerevisiae for De Novo Synthesis of Phloretin and Its Derivatives. J Agric Food Chem 73(1):735-746 PMID:39723863
- Li J, et al. (2025) Engineering phenylpyruvate decarboxylase for controlled biosynthesis of aromatic amino acid derivatives. Metab Eng 91:466-479 PMID:40617266
- Ribeiro MO, et al. (2025) N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Commun Signal 23(1):10 PMID:39773523
- Sooklim C, et al. (2025) Integrated omic analysis of a new flavor yeast strain in fermented rice milk. FEMS Yeast Res 25 PMID:40153366
- Sun Y, et al. (2025) Elucidation and de novo reconstitution of glyceollin biosynthesis. Mol Plant 18(5):820-832 PMID:40211535
- Wang G, et al. (2025) Improved biosynthesis of tyrosol by epigenetic modification-based regulation and metabolic engineering in Saccharomyces cerevisiae. J Biotechnol 398:175-182 PMID:39746378
- Yang J, et al. (2025) De Novo Production of Piceatannol via Construction of Interconnected Biosynthetic Pathways in a Single Saccharomyces cerevisiae Strain. J Agric Food Chem 73(19):11889-11899 PMID:40305414
- Ali SA, et al. (2024) New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance. Yeast 41(6):401-417 PMID:38708451
- Azambuja SPH, et al. (2024) Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance. Food Res Int 190:114637 PMID:38945626
- Diamond PD, et al. (2024) Depletion of cap-binding protein eIF4E dysregulates amino acid metabolic gene expression. Mol Cell 84(11):2119-2134.e5 PMID:38848691
- Noda S, et al. (2024) Metabolic and enzymatic engineering approach for the production of 2-phenylethanol in engineered Escherichia coli. Bioresour Technol 406:130927 PMID:38830477
- Xu W, et al. (2024) De Novo Synthesis of Chrysin in Saccharomyces cerevisiae. J Agric Food Chem 72(12):6481-6490 PMID:38481145
- Yang S, et al. (2024) De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun 15(1):253 PMID:38177132
- Zhang A, et al. (2024) Manipulating the nucleolar serine-rich protein Srp40p in Saccharomyces cerevisiae may improve isobutanol production. World J Microbiol Biotechnol 40(11):349 PMID:39404979
- Zhou X, et al. (2024) Structure-guided engineering of 4-coumarate: CoA ligase for efficient production of rosmarinic acid in Saccharomyces cerevisiae. J Biotechnol 396:140-149 PMID:39536797
- Wang H, et al. (2023) Promoting FADH2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. J Agric Food Chem 71(44):16681-16690 PMID:37877749
- Wang Z, et al. (2023) Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. ACS Synth Biol 12(10):2922-2933 PMID:37767718
- Xia Y, et al. (2023) Construction of an Escherichia coli cell factory for de novo synthesis of tyrosol through semi-rational design based on phenylpyruvate decarboxylase ARO10 engineering. Int J Biol Macromol 253(Pt 7):127385 PMID:37848109
- Yang J, et al. (2023) Organelle-dependent polyprotein designs enable stoichiometric expression of nitrogen fixation components targeted to mitochondria. Proc Natl Acad Sci U S A 120(34):e2305142120 PMID:37585462
- Ciamponi FE, et al. (2022) Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 12(1):22466 PMID:36577778
- Gambacorta FV, et al. (2022) Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway. Synth Syst Biotechnol 7(2):738-749 PMID:35387233
- Liu Y, et al. (2022) De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces cerevisiae. J Agric Food Chem 70(24):7490-7499 PMID:35649155
- Nishimura A, et al. (2022) Isolation and analysis of a sake yeast mutant with phenylalanine accumulation. J Ind Microbiol Biotechnol 49(3) PMID:34788829
- Qiao S, et al. (2022) Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation. Nat Commun 13(1):3041 PMID:35650207
- Tapia SM, et al. (2022) Functional divergence in the proteins encoded by ARO80 from S. uvarum, S. kudriavzevii and S. cerevisiae explain differences in the aroma production during wine fermentation. Microb Biotechnol 15(8):2281-2291 PMID:35536034
- Xia H, et al. (2022) Rapamycin enhanced the production of 2-phenylethanol during whole-cell bioconversion by yeast. Appl Microbiol Biotechnol 106(19-20):6471-6481 PMID:36098787
- Kulagina N, et al. (2021) Microbial Cell Factories for Tetrahydroisoquinoline Alkaloid Production. Chembiochem 22(4):639-641 PMID:32964698
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Liu P, et al. (2021) Effect of Unsaturated Fatty Acids on Intra-Metabolites and Aroma Compounds of Saccharomyces cerevisiae in Wine Fermentation. Foods 10(2) PMID:33573124
- Su Y, et al. (2021) Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res 21(2) PMID:33620449
- Tuong Vi DT, et al. (2021) Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources. PLoS One 16(5):e0251456 PMID:33984024
- Wang P, et al. (2021) Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Sci Bull (Beijing) 66(18):1906-1916 PMID:36654400
- Wang YP, et al. (2021) GAT1 Gene, the GATA Transcription Activator, Regulates the Production of Higher Alcohol during Wheat Beer Fermentation by Saccharomyces cerevisiae. Bioengineering (Basel) 8(5) PMID:34066902
- Blank HM, et al. (2020) Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol Biol Cell 31(10):1069-1084 PMID:32129706
- Wu Y, et al. (2020) Comparative transcriptome analysis of genomic region deletion strain with enhanced L-tyrosine production in Saccharomyces cerevisiae. Biotechnol Lett 42(3):453-460 PMID:31863218
- Xu W, et al. (2020) High-Level Production of Tyrosol with Noninduced Recombinant Escherichia coli by Metabolic Engineering. J Agric Food Chem 68(16):4616-4623 PMID:32208625
- Zeng B, et al. (2020) Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l-Tyrosine. J Agric Food Chem 68(29):7691-7696 PMID:32578426
- Zhang S, et al. (2020) [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao 36(9):1838-1848 PMID:33164460
- Zou K, et al. (2020) Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6(32):eaba1306 PMID:32821821
- Borja GM, et al. (2019) Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Fact 18(1):191 PMID:31690329
- Hassing EJ, et al. (2019) Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metab Eng 56:165-180 PMID:31574317
- Kallscheuer N, et al. (2019) Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington's Disease. Plant Physiol 179(3):969-985 PMID:30397021
- Liu Q, et al. (2019) Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat Commun 10(1):4976 PMID:31672987
- Lyu X, et al. (2019) Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol. J Agric Food Chem 67(19):5596-5606 PMID:30957490
- Shen YP, et al. (2019) Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. Biotechnol Biofuels 12:94 PMID:31044007
- Shrestha A, et al. (2019) Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Appl Microbiol Biotechnol 103(7):2959-2972 PMID:30798357
- Levisson M, et al. (2018) Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact 17(1):103 PMID:29970082
- Li X, et al. (2018) Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synth Biol 7(2):647-654 PMID:29281883
- Li Y, et al. (2018) Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Natl Acad Sci U S A 115(17):E3922-E3931 PMID:29610307
- Mao J, et al. (2018) A high-throughput method for screening of L-tyrosine high-yield strains by Saccharomyces cerevisiae. J Gen Appl Microbiol 64(4):198-201 PMID:29695662
- Nevers A, et al. (2018) Antisense transcriptional interference mediates condition-specific gene repression in budding yeast. Nucleic Acids Res 46(12):6009-6025 PMID:29788449
- Nishimura Y, et al. (2018) Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Microb Cell Fact 17(1):38 PMID:29523149
- Reifenrath M and Boles E (2018) Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng 45:246-254 PMID:29330068
- Wang Z, et al. (2018) Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microb Cell Fact 17(1):60 PMID:29642888
- Chen X, et al. (2017) Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J Biotechnol 242:83-91 PMID:27908775
- Inokuma K, et al. (2017) Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique. Front Bioeng Biotechnol 5:81 PMID:29326929
- Liu J, et al. (2017) Synergistic Effect in Core Microbiota Associated with Sulfur Metabolism in Spontaneous Chinese Liquor Fermentation. Appl Environ Microbiol 83(24) PMID:28970229
- Lyu X, et al. (2017) Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae. J Agric Food Chem 65(31):6638-6646 PMID:28707470
- Machas MS, et al. (2017) Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol. Biotechnol J 12(10) PMID:28799719
- Yuan J, et al. (2017) Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44(1):107-117 PMID:27826727
- Yuan J, et al. (2016) Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions. J Biotechnol 239:90-97 PMID:27746307
- Becerra M, et al. (2015) Biobutanol from cheese whey. Microb Cell Fact 14:27 PMID:25889728
- Kim S, et al. (2015) Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2705-14 PMID:25573467
- Masuo S, et al. (2015) Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 77:22-30 PMID:25797315
- Milne N, et al. (2015) Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. Biotechnol Biofuels 8:204 PMID:26628917
- Teo WS, et al. (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:177 PMID:26543501
- Trenchard IJ, et al. (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74-83 PMID:26166409
- Yin S, et al. (2015) Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains. Curr Microbiol 70(5):762-7 PMID:25681107
- Mates N, et al. (2014) Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis. Mol Cell Proteomics 13(3):860-75 PMID:24434903
- McKenna R, et al. (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13:123 PMID:25162943
- Park SH, et al. (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98(21):9139-47 PMID:25280745
- Su H, et al. (2014) Identification and assessment of the effects of yeast decarboxylases expressed in Escherichia coli for producing higher alcohols. J Appl Microbiol 117(1):126-38 PMID:24690097
- Avalos JL, et al. (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335-41 PMID:23417095
- Bolat I, et al. (2013) Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. FEMS Yeast Res 13(6):505-17 PMID:23692465
- Brat D and Boles E (2013) Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 13(2):241-4 PMID:23279585
- Vidal EE, et al. (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem 138(1):701-8 PMID:23265543
- Brat D, et al. (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):65 PMID:22954227
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Lee WH, et al. (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35(9):1467-75 PMID:22543927
- Lubeck E and Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9(7):743-8 PMID:22660740
- Rossouw D, et al. (2012) Transcriptional regulation and the diversification of metabolism in wine yeast strains. Genetics 190(1):251-61 PMID:22042577
- Spedale G, et al. (2012) Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA. Nucleic Acids Res 40(3):996-1008 PMID:21976730
- Veiga T, et al. (2012) Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum. Eukaryot Cell 11(2):238-49 PMID:22158714
- Weiner A, et al. (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10(7):e1001369 PMID:22912562
- Carreto L, et al. (2011) Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics 12:201 PMID:21507216
- Hébert A, et al. (2011) Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 11(4):366-78 PMID:21348937
- Oba T, et al. (2011) Properties of a high malic acid-producing strains of Saccharomyces cerevisiae isolated from sake mash. Biosci Biotechnol Biochem 75(10):2025-9 PMID:21979083
- Reid RJ, et al. (2011) Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome Res 21(3):477-86 PMID:21173034
- Farhi M, et al. (2010) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 72(3):235-45 PMID:19882107
- Ma M and Liu LZ (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10:169 PMID:20537179
- Staschke KA, et al. (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285(22):16893-911 PMID:20233714
- Baerends RJ, et al. (2009) Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75(19):6055-61 PMID:19666729
- Bourges I, et al. (2009) Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes. J Mol Biol 387(5):1081-91 PMID:19245817
- Del Vescovo V, et al. (2008) Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride. Physiol Genomics 33(1):110-20 PMID:18198280
- Ghosh S, et al. (2008) Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol 74(23):7211-8 PMID:18836025
- Huthmacher C, et al. (2008) A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling. J Theor Biol 252(3):456-64 PMID:17988690
- Godard P, et al. (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27(8):3065-86 PMID:17308034
- Liu X, et al. (2007) Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae. Curr Microbiol 54(4):325-30 PMID:17334841
- Lu P, et al. (2007) Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. Metab Eng 9(1):8-20 PMID:17049899
- Versées W, et al. (2007) The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 A resolution. Implications for its catalytic and regulatory mechanism. FEBS J 274(9):2363-75 PMID:17403037
- Chen H and Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20(9):1150-61 PMID:16618799
- Guo Y, et al. (2006) Analysis of cellular responses to aflatoxin B(1) in yeast expressing human cytochrome P450 1A2 using cDNA microarrays. Mutat Res 593(1-2):121-42 PMID:16122766
- Hazelwood LA, et al. (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6(6):937-45 PMID:16911515
- Mojzita D and Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276(2):147-61 PMID:16850348
- Tagwerker C, et al. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5(4):737-48 PMID:16432255
- Kleinschmidt M, et al. (2005) Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Mol Genet Genomics 273(5):382-93 PMID:15843968
- Lahue E, et al. (2005) The Saccharomyces cerevisiae Sub2 protein suppresses heterochromatic silencing at telomeres and subtelomeric genes. Yeast 22(7):537-51 PMID:15942929
- Tu BP, et al. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751):1152-8 PMID:16254148
- Møller K, et al. (2004) Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri. Mol Genet Genomics 270(6):558-68 PMID:14648197
- Barz T, et al. (2003) Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling. J Cell Sci 116(Pt 8):1563-77 PMID:12640040
- Bro C, et al. (2003) Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J Biol Chem 278(34):32141-9 PMID:12791685
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Peng J, et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921-6 PMID:12872131
- Bertram PG, et al. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275(46):35727-33 PMID:10940301
- ter Linde JJ, et al. (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181(24):7409-13 PMID:10601195
- Jones RC and Hough JS (1970) The effect of temperature on the metabolism of baker's yeast growing on continuous culture. J Gen Microbiol 60(1):107-16 PMID:4321211
Reviews
No reviews curated.
Download References (.nbib)
- Niu W, et al. (2025) Advances in synthesizing plant-derived isoflavones and their precursors with multiple pharmacological activities using engineered yeasts. Microb Cell Fact 24(1):75 PMID:40155940
- Bernard A, et al. (2024) Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 42(12):1644-1662 PMID:39019677
- Melo NTM, et al. (2024) Just around the Corner: Advances in the Optimization of Yeasts and Filamentous Fungi for Lactic Acid Production. J Fungi (Basel) 10(3) PMID:38535215
- Wang J, et al. (2024) Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 13(9):2667-2683 PMID:39145487
- Yin MQ, et al. (2024) Metabolic engineering for compartmentalized biosynthesis of the valuable compounds in Saccharomyces cerevisiae. Microbiol Res 286:127815 PMID:38944943
- Zhao Y, et al. (2024) Building Synthetic Yeast Factories to Produce Fat-soluble Antioxidants. Curr Opin Biotechnol 87:103129 PMID:38703526
- Fazio NA, et al. (2023) Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 11(5) PMID:37317312
- Li L, et al. (2023) Quorum sensing: cell-to-cell communication in Saccharomyces cerevisiae. Front Microbiol 14:1250151 PMID:38075875
- Cámara E, et al. (2022) Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 57:107947 PMID:35314324
- Maitland MER, et al. (2022) Structural and Functional Insights into GID/CTLH E3 Ligase Complexes. Int J Mol Sci 23(11) PMID:35682545
- Mitri S, et al. (2022) Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 11(1) PMID:35010235
- Lakshmi NM, et al. (2021) Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 12(2):12308-12321 PMID:34927549
- Zha J, et al. (2021) Yeast-Based Biosynthesis of Natural Products From Xylose. Front Bioeng Biotechnol 9:634919 PMID:33614617
- Chrzanowski G (2020) Saccharomyces Cerevisiae-An Interesting Producer of Bioactive Plant Polyphenolic Metabolites. Int J Mol Sci 21(19) PMID:33027901
- Molina-Espeja P (2020) Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering (Basel) 7(4) PMID:33066502
- Cordente AG, et al. (2019) Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl Microbiol Biotechnol 103(11):4325-4336 PMID:31020380
- Holt S, et al. (2019) The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 43(3):193-222 PMID:30445501
- Kwak S, et al. (2019) Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 37(2):271-283 PMID:30553928
- Lyu X, et al. (2019) Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. J Agric Food Chem 67(16):4397-4417 PMID:30844263
- Jeandet P, et al. (2018) Engineering stilbene metabolic pathways in microbial cells. Biotechnol Adv 36(8):2264-2283 PMID:30414914
- Lian J, et al. (2018) Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. Biotechnol J 13(9):e1700601 PMID:29436783
- Lian J, et al. (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 50:85-108 PMID:29702275
- Querol A, et al. (2018) New Trends in the Uses of Yeasts in Oenology. Adv Food Nutr Res 85:177-210 PMID:29860974
- Dzialo MC, et al. (2017) Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 41(Supp_1):S95-S128 PMID:28830094
- Nedović V, et al. (2015) Aroma formation by immobilized yeast cells in fermentation processes. Yeast 32(1):173-216 PMID:25267117
- Mas A, et al. (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int 2014:898045 PMID:24895623
- Pires EJ, et al. (2014) Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98(5):1937-49 PMID:24384752
- Cordente AG, et al. (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96(3):601-18 PMID:22940803
- Hazelwood LA, et al. (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259-66 PMID:18281432
- Kobayashi M, et al. (2008) Beer volatile compounds and their application to low-malt beer fermentation. J Biosci Bioeng 106(4):317-23 PMID:19000606
- Sprague GF and Winans SC (2006) Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev 20(9):1045-9 PMID:16651650
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Kneen MM, et al. (2011) Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 278(11):1842-53 PMID:21501384
- Perpète P, et al. (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):48-56 PMID:16423070
- Dickinson JR, et al. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278(10):8028-34 PMID:12499363
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Vuralhan Z, et al. (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69(8):4534-41 PMID:12902239
- Dickinson JR, et al. (2000) An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275(15):10937-42 PMID:10753893
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Zhang D, et al. (2021) Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Appl Microbiol Biotechnol 105(9):3635-3648 PMID:33852023
- Valera MJ, et al. (2020) The Mandelate Pathway, an Alternative to the Phenylalanine Ammonia Lyase Pathway for the Synthesis of Benzenoids in Ascomycete Yeasts. Appl Environ Microbiol 86(17) PMID:32561586
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Scutenaire J, et al. (2023) The S. cerevisiae m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Res 51(2):517-535 PMID:35934316
- Lehner MH, et al. (2022) Yeast Smy2 and its human homologs GIGYF1 and -2 regulate Cdc48/VCP function during transcription stress. Cell Rep 41(4):111536 PMID:36288698
- Girstmair H, et al. (2019) The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 10(1):3626 PMID:31399574
- Rössler I, et al. (2019) Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Res 47(13):6984-7002 PMID:31062022
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Gorkovskiy A, et al. (2017) Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A 114(21):E4193-E4202 PMID:28484020
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Raja V, et al. (2017) Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis. J Biol Chem 292(3):1092-1102 PMID:27941023
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Yu AQ, et al. (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36-43 PMID:26721212
- Kershaw CJ, et al. (2015) Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Sci Rep 5:15518 PMID:26493364
- Samra N, et al. (2015) The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 16:17 PMID:26404137
- Yin S, et al. (2015) Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains. Curr Microbiol 70(5):762-7 PMID:25681107
- Yin S, et al. (2015) Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae. FEMS Microbiol Lett 362(5) PMID:25743068
- Freeberg MA, et al. (2013) Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14(2):R13 PMID:23409723
- Babu M, et al. (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585-9 PMID:22940862
- Reid RJ, et al. (2011) Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome Res 21(3):477-86 PMID:21173034
- Szappanos B, et al. (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43(7):656-62 PMID:21623372
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Download References (.nbib)
- Du Z, et al. (2022) Cat8 Response to Nutritional Changes and Interaction With Ehrlich Pathway Related Factors. Front Microbiol 13:898938 PMID:35783377
- Wang YP, et al. (2021) GAT1 Gene, the GATA Transcription Activator, Regulates the Production of Higher Alcohol during Wheat Beer Fermentation by Saccharomyces cerevisiae. Bioengineering (Basel) 8(5) PMID:34066902
- Wang Z, et al. (2017) Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 44(1):129-139 PMID:27770224
- Lee K, et al. (2013) Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae. Biochem Biophys Res Commun 438(1):43-7 PMID:23860270
- Iraqui I, et al. (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19(5):3360-71 PMID:10207060
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Blaszczak E, et al. (2024) Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 23(1):100695 PMID:38101750
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Peng J, et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921-6 PMID:12872131
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Phua CZJ, et al. (2023) Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. Geroscience 45(4):2161-2178 PMID:37086368
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
- Khurana V, et al. (2017) Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Syst 4(2):157-170.e14 PMID:28131822
- Kuang Z, et al. (2017) Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. Elife 6 PMID:28949295
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60 PMID:22356628
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Yu D, et al. (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623 PMID:23151179
- Uluisik I, et al. (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772 PMID:22114689
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Alamgir M, et al. (2010) Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol 10:6 PMID:20691087
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549