Reference: Reifenrath M and Boles E (2018) Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metab Eng 45:246-254

Reference Help

Abstract


Mandelic acid (MA) and 4-hydroxymandelic acid (HMA) are valuable specialty chemicals used as precursors for flavors as well as for cosmetic and pharmaceutical purposes. Today they are mainly synthesized chemically. Their synthesis through microbial fermentation would allow for environmentally sustainable production. In this work, we engineered the yeast Saccharomyces cerevisiae for high-level production of MA and HMA. Expressing the hydroxymandelate synthase from Amycolatopsis orientalis in a yeast wild type strain resulted in the production of 119mg/L HMA from glucose. As the enzyme also accepts phenylpyruvate as a substrate aside from its native substrate 4-hydroxyphenylpyruvate, 0.7mg/L MA was also produced. Preventing binding of 4-hydroxyphenylpyruvate to the hydroxymandelate synthase by introducing a S201V replacement in its substrate binding site nearly completely prevented HMA production but increased MA production only 3.5-fold. To further increase HMA and MA production, the aromatic amino acid pathway was engineered. We increased the precursor supply by introducing modifications in the shikimic acid pathway (ARO1↑, ARO3K222L↑, ARO4K220L↑) and reducing flux into the Ehrlich pathway (aro10Δ), and thereby enhanced the HMA titer to 465mg/L and the MA titer to 2.9mg/L. A further increase in HMA and MA titers was achieved by replacing the hydroxymandelate synthase from A. orientalis with the corresponding enzyme from Nocardia uniformis. Subsequently, we introduced additional deletions to block the competing tryptophan branch (trp2Δ), to further decrease flux into the Ehrlich pathway (pdc5Δ) and to avoid transamination of phenylpyruvate and 4-hydroxyphenylpyruvate (aro8Δ, aro9Δ). We achieved more than 1g/L 4-hydroxymandelate when additionally preventing formation of phenylpyruvate by deleting PHA2. When deleting TYR1 to prevent formation of 4-hydroxyphenylpyruvate instead, an MA titer of 236mg/L was achieved. This is a more than 200-fold increase in MA production compared to the wild type strain expressing the hydroxymandelate synthase from A. orientalis. Finally, we showed that S. cerevisiae tolerates HMA and MA to concentrations as high as 3g/L and 7.5g/L, respectively. Our results demonstrate that S. cerevisiae is a promising host for sustainable MA and HMA production.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Reifenrath M, Boles E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference