Reference: Zhang S, et al. (2020) [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao 36(9):1838-1848

Reference Help

Abstract


p-Coumaric acid is an important precursor of various natural compounds, such as flavonoids and stilbenes. It has been widely used in biomedicine, food, nutrition and health care industries. Compared with traditional plant extracts and chemical synthesis, microbial synthesis of natural compounds such as p-coumaric acid has attracted wide attention due to its short production cycle and high conversion efficiency. Here a p-coumaric acid-producing Saccharomyces cerevisiae platform strain was developed. First, the tyrosine synthesis competition pathway genes ARO10 and PDC5 were knocked out, and ARO4(K229L) and ARO7(G141S) were mutated to release negative feedback inhibition from tyrosine. The tyrosine ammonia-lyase coding gene TAL from Flavobacterium johnsoniaeu was then integrated into genome and obtained C001 with yield of p-coumaric acid 296.73 mg/L. To further increase the accumulation of p-coumaric acid precursors, 8 genes encoding amino acids and carbohydrate transporters were knocked out and the gluconeogenesis pathway was enhanced. The results showed that GAL2 knockout and overexpression of EcppsA increased the yield of p-coumaric acid to 475.11 mg/L. Finally, the effect of FjTAL anchoring to yeast vacuoles on product accumulation was analyzed, and the highest titer of p-coumaric acid of 593.04 mg/L was obtained after intracellular vacuolar localization of FjTAL. It provided an efficient p-coumaric acid-producing platform strain for the subsequent synthesis of flavonoids and stilbene compounds by enhancing the supply of precursors, blocking the competitive bypass pathway, and using the strategy of subcellular localization.

Reference Type
Journal Article
Authors
Zhang S, Zhou J, Zhang G, Chen J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference