AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Mauricio JC
  • References

Author: Mauricio JC


References 46 references


No citations for this author.

Download References (.nbib)

  • García-García JC, et al. (2025) Comparative Proteomics of Two Flor Yeasts in Sparkling Wine Fermentation: First Approach. Foods 14(2) PMID:39856948
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carbonero-Pacheco J, et al. (2024) Influence of flor yeast starters on volatile and nitrogen compounds during a controlled biological aging. Food Microbiol 124:104609 PMID:39244361
    • SGD Paper
    • DOI full text
    • PubMed
  • García-García JC, et al. (2024) Evaluation of the Protein Profile of a Saccharomyces cerevisiae Strain Immobilized in Biocapsules for Use in Fermented Foods. Foods 13(23) PMID:39682943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • González-Jiménez MDC, et al. (2023) Endogenous CO2 Overpressure Effect on Higher Alcohols Metabolism during Sparkling Wine Production. Microorganisms 11(7) PMID:37512803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñoz-Castells R, et al. (2022) Effect of Bentonite Addition to Pedro Ximénez White Grape Musts before Their Fermentation with Selected Yeasts on the Major Volatile Compounds and Polyols of Wines and Tentative Relationships with the Sensorial Evaluation. Molecules 27(22) PMID:36432158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carbonero-Pacheco J, et al. (2021) Revealing the Yeast Diversity of the Flor Biofilm Microbiota in Sherry Wines Through Internal Transcribed Spacer-Metabarcoding and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. Front Microbiol 12:825756 PMID:35222316
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martínez-García R, et al. (2021) Using an electronic nose and volatilome analysis to differentiate sparkling wines obtained under different conditions of temperature, ageing time and yeast formats. Food Chem 334:127574 PMID:32721835
    • SGD Paper
    • DOI full text
    • PubMed
  • Martínez-García R, et al. (2021) Towards a better understanding of the evolution of odour-active compounds and the aroma perception of sparkling wines during ageing. Food Chem 357:129784 PMID:33901917
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa M, et al. (2021) Metabolic Changes by Wine Flor-Yeasts with Gluconic Acid as the Sole Carbon Source. Metabolites 11(3) PMID:33800958
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Porras-Agüera JA, et al. (2021) Impact of CO2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 348:109226 PMID:33964807
    • SGD Paper
    • DOI full text
    • PubMed
  • González-Jiménez MDC, et al. (2020) Comparative Study of the Proteins Involved in the Fermentation-Derived Compounds in Two Strains of Saccharomyces cerevisiae during Sparkling Wine Second Fermentation. Microorganisms 8(8) PMID:32784425
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • González-Jiménez MDC, et al. (2020) Biological Processes Highlighted in Saccharomyces cerevisiae during the Sparkling Wines Elaboration. Microorganisms 8(8) PMID:32796563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • González-Jiménez MDC, et al. (2020) Differential Analysis of Proteins Involved in Ester Metabolism in two Saccharomyces cerevisiae Strains during the Second Fermentation in Sparkling Wine Elaboration. Microorganisms 8(3) PMID:32183073
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martínez-García R, et al. (2020) Use of a flor yeast strain for the second fermentation of sparkling wines: Effect of endogenous CO2 over-pressure on the volatilome. Food Chem 308:125555 PMID:31655483
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa M, et al. (2020) Mapping the intracellular metabolome of yeast biocapsules - Spherical structures of yeast attached to fungal pellets. N Biotechnol 58:55-60 PMID:32562862
    • SGD Paper
    • DOI full text
    • PubMed
  • Porras-Agüera JA, et al. (2020) A Differential Proteomic Approach to Characterize the Cell Wall Adaptive Response to CO2 Overpressure during Sparkling Wine-Making Process. Microorganisms 8(8) PMID:32759881
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Porras-Agüera JA, et al. (2020) Effect of endogenous CO2 overpressure on the yeast "stressome" during the "prise de mousse" of sparkling wine. Food Microbiol 89:103431 PMID:32138989
    • SGD Paper
    • DOI full text
    • PubMed
  • Porras-Agüera JA, et al. (2020) Autophagic Proteome in Two Saccharomyces cerevisiae Strains During Second Fermentation for Sparkling Wine Elaboration. Microorganisms 8(4) PMID:32268562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ogawa M, et al. (2019) New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 103(12):4723-4731 PMID:31079167
    • SGD Paper
    • DOI full text
    • PubMed
  • Porras-Agüera JA, et al. (2019) First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production. Microorganisms 7(11) PMID:31717411
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • López de Lerma N, et al. (2018) Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem 250:22-29 PMID:29412914
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2018) Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain. FEMS Yeast Res 18(2) PMID:29370419
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2018) Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Front Microbiol 9:241 PMID:29497415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-García J, et al. (2018) FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 9:2586 PMID:30429833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-García J, et al. (2018) Comparative analysis of intracellular metabolites, proteins and their molecular functions in a flor yeast strain under two enological conditions. World J Microbiol Biotechnol 35(1):6 PMID:30554283
    • SGD Paper
    • DOI full text
    • PubMed
  • Martínez-García R, et al. (2017) Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem 237:1030-1040 PMID:28763947
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2017) Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation. Int J Mol Sci 18(4) PMID:28350350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Legras JL, et al. (2016) Flor Yeast: New Perspectives Beyond Wine Aging. Front Microbiol 7:503 PMID:27148192
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-García J, et al. (2016) Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition. Data Brief 7:1021-3 PMID:27104213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-García J, et al. (2015) Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol 51:1-9 PMID:26187821
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2015) Proteins involved in flor yeast carbon metabolism under biofilm formation conditions. Food Microbiol 46:25-33 PMID:25475262
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2014) A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol 172:21-9 PMID:24361829
    • SGD Paper
    • DOI full text
    • PubMed
  • García-Martínez T, et al. (2013) Sweet wine production by two osmotolerant Saccharomyces cerevisiae strains. J Food Sci 78(6):M874-9 PMID:23601087
    • SGD Paper
    • DOI full text
    • PubMed
  • López de Lerma N, et al. (2012) Volatile composition of partially fermented wines elaborated from sun dried Pedro Ximénez grapes. Food Chem 135(4):2445-52 PMID:22980827
    • SGD Paper
    • DOI full text
    • PubMed
  • Aguilera F, et al. (2006) Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110(1):34-42 PMID:16690148
    • SGD Paper
    • DOI full text
    • PubMed
  • Peinado RA, et al. (2005) Use of a novel immobilization yeast system for winemaking. Biotechnol Lett 27(18):1421-4 PMID:16215861
    • SGD Paper
    • DOI full text
    • PubMed
  • Berlanga TM, et al. (2004) Influence of blending on the content of different compounds in the biological aging of sherry dry wines. J Agric Food Chem 52(9):2577-81 PMID:15113160
    • SGD Paper
    • DOI full text
    • PubMed
  • Peinado RA, et al. (2004) Changes in volatile compounds and aromatic series in sherry wine with high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol Lett 26(9):757-62 PMID:15195978
    • SGD Paper
    • DOI full text
    • PubMed
  • Peinado RA, et al. (2003) Changes in gluconic acid, polyols and major volatile compounds in sherry wine during aging with submerged flor yeast cultures. Biotechnol Lett 25(22):1887-91 PMID:14719822
    • SGD Paper
    • DOI full text
    • PubMed
  • Peinado RA, et al. (2003) Effect of gluconic acid consumption during simulation of biological aging of sherry wines by a flor yeast strain on the final volatile compounds. J Agric Food Chem 51(21):6198-203 PMID:14518944
    • SGD Paper
    • DOI full text
    • PubMed
  • Berlanga TM, et al. (2001) Influence of aeration on the physiological activity of flor yeasts. J Agric Food Chem 49(7):3378-84 PMID:11453778
    • SGD Paper
    • DOI full text
    • PubMed
  • Mauricio JC, et al. (2001) Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J Agric Food Chem 49(7):3310-5 PMID:11453768
    • SGD Paper
    • DOI full text
    • PubMed
  • Guijo S, et al. (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines. Yeast 13(2):101-17 PMID:9046092
    • SGD Paper
    • DOI full text
    • PubMed
  • Mauricio JC, et al. (1995) Changes in the intracellular concentrations of the adenosine phosphates and nicotinamide adenine dinucleotides ofSaccharomyces cerevisiae during batch fermentation. World J Microbiol Biotechnol 11(2):196-201 PMID:24414502
    • SGD Paper
    • DOI full text
    • PubMed
  • Mauricio JC and Ortega JM (1993) Influence of fermentation conditions on specific activity of the enzymes alcohol and aldehyde dehydrogenase from yeasts. Microbios 75(303):95-106 PMID:8412848
    • SGD Paper
    • PubMed
  • Millán C, et al. (1990) Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must. Microbios 64(259):93-101 PMID:2277591
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top