AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Liu T
  • References

Author: Liu T


References 64 references


No citations for this author.

Download References (.nbib)

  • Bai P, et al. (2025) High-level sustainable production of complex phenylethanoid glycosides from glucose through engineered yeast cell factories. Metab Eng 87:95-108 PMID:39603334
    • SGD Paper
    • DOI full text
    • PubMed
  • Qi M, et al. (2025) Enhancing Cannabichromenic Acid Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 14(2):531-541 PMID:39808700
    • SGD Paper
    • DOI full text
    • PubMed
  • Chi H, et al. (2024) Geranylgeraniol: Bio-based platform for teprenone, menaquinone-4, and α-tocotrienol synthesis. Bioresour Technol 411:131349 PMID:39182791
    • SGD Paper
    • DOI full text
    • PubMed
  • Deng X, et al. (2024) Complete pathway elucidation and heterologous reconstitution of (+)-nootkatone biosynthesis from Alpinia oxyphylla. New Phytol 241(2):779-792 PMID:37933426
    • SGD Paper
    • DOI full text
    • PubMed
  • Ge X, et al. (2024) Metabolomic analysis of hydroxycinnamic acid inhibition on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 108(1):165 PMID:38252275
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ji X, et al. (2024) Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms. Bioresour Technol 406:131062 PMID:38964514
    • SGD Paper
    • DOI full text
    • PubMed
  • Li Z, et al. (2024) Improved properties of dough fermented with rice wine prepared by mixed Saccharomycopsis fibuligera SF7 and Saccharomyces cerevisiae SC1. Food Sci Biotechnol 33(15):3473-3480 PMID:39493390
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ge X, et al. (2023) Analysis of Inhibitory Behaviour of Ferulic Acid and p-Coumaric Acid on Saccharomyces Cerevisiae Cells. Stud Health Technol Inform 308:365-371 PMID:38007761
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo J, et al. (2023) Metabolic Engineering of Saccharomyces cerevisiae for Vitamin B5 Production. J Agric Food Chem 71(19):7408-7417 PMID:37154424
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu T, et al. (2023) The Phosphatase VdPtc3 Regulates Virulence in Verticillium dahliae by Interacting with VdAtg1. Phytopathology 113(6):1048-1057 PMID:36449525
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu T, et al. (2023) Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Bioresour Technol 379:129023 PMID:37028528
    • SGD Paper
    • DOI full text
    • PubMed
  • Cui T, et al. (2022) RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Res 50(D1):D333-D339 PMID:34551440
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deng X, et al. (2022) Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (-)-eremophilene overproduction in engineered yeast. Metab Eng 69:122-133 PMID:34781019
    • SGD Paper
    • DOI full text
    • PubMed
  • Gao D, et al. (2022) De Novo Biosynthesis of Vindoline and Catharanthine in Saccharomyces cerevisiae. Biodes Res 2022:0002 PMID:37905202
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu T, et al. (2022) The Mutual Influence of Predominant Microbes in Sourdough Fermentation: Focusing on Flavor Formation and Gene Transcription. Foods 11(15) PMID:35954139
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu T, et al. (2022) Systematic Optimization of HPO-CPR to Boost (+)-Nootkatone Synthesis in Engineered Saccharomyces cerevisiae. J Agric Food Chem 70(49):15548-15559 PMID:36468547
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu D, et al. (2022) Creation of a Yeast Strain with Co-Translationally Acylated Nucleosomes. Angew Chem Int Ed Engl 61(30):e202205570 PMID:35644909
    • SGD Paper
    • DOI full text
    • PubMed
  • Ye Z, et al. (2022) Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metab Eng 72:107-115 PMID:35296429
    • SGD Paper
    • DOI full text
    • PubMed
  • Ye Z, et al. (2022) Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation (Camb) 3(3):100228 PMID:35373168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin H, et al. (2022) Correction to: Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Microb Cell Fact 21(1):18 PMID:35120499
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang Y, et al. (2021) De Novo Production of Glycyrrhetic Acid 3-O-mono-β-D-glucuronide in Saccharomyces cerevisiae. Front Bioeng Biotechnol 9:709120 PMID:34888299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang L, et al. (2021) Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Front Bioeng Biotechnol 9:764851 PMID:34957066
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu T, et al. (2021) De Novo Biosynthesis of Polydatin in Saccharomyces cerevisiae. J Agric Food Chem 69(21):5917-5925 PMID:34018734
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu T, et al. (2021) Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Commun Biol 4(1):1089 PMID:34531512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu T, et al. (2021) [High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine]. Sheng Wu Gong Cheng Xue Bao 37(9):3348-3360 PMID:34622641
    • SGD Paper
    • DOI full text
    • PubMed
  • Maria H, et al. (2021) Conservation of a DNA Replication Motif among Phylogenetically Distant Budding Yeast Species. Genome Biol Evol 13(7) PMID:34132803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chang Y, et al. (2020) Biomineralized nanosilica-based organelles endow living yeast cells with non-inherent biological functions. Chem Commun (Camb) 56(42):5693-5696 PMID:32319480
    • SGD Paper
    • DOI full text
    • PubMed
  • Humphrey KM, et al. (2020) Evolution of Distinct Responses to Low NAD+ Stress by Rewiring the Sir2 Deacetylase Network in Yeasts. Genetics 214(4):855-868 PMID:32071196
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang C, et al. (2020) Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast. Sci China Life Sci 63(11):1734-1743 PMID:32347474
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu T, et al. (2020) Construction of a Stable and Temperature-Responsive Yeast Cell Factory for Crocetin Biosynthesis Using CRISPR-Cas9. Front Bioeng Biotechnol 8:653 PMID:32695754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tan L, et al. (2020) Efficient Selection Scheme for Incorporating Noncanonical Amino Acids Into Proteins in Saccharomyces cerevisiae. Front Bioeng Biotechnol 8:569191 PMID:33042970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao H, et al. (2020) Denoising Protein-Protein interaction network via variational graph auto-encoder for protein complex detection. J Bioinform Comput Biol 18(3):2040010 PMID:32698725
    • SGD Paper
    • DOI full text
    • PubMed
  • Yin H, et al. (2020) Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Microb Cell Fact 19(1):218 PMID:33243241
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Davis RB, et al. (2019) Robust repression of tRNA gene transcription during stress requires protein arginine methylation. Life Sci Alliance 2(3) PMID:31160378
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kang W, et al. (2019) Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat Commun 10(1):4248 PMID:31534134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ma T, et al. (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134-142 PMID:30471360
    • SGD Paper
    • DOI full text
    • PubMed
  • Shi B, et al. (2019) Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction. J Agric Food Chem 67(40):11148-11157 PMID:31532654
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang P, et al. (2019) Evaluation of the Potential Phosphorylation Effect on Isocitrate Dehydrogenases from Saccharomyces cerevisiae and Yarrowia lipolytica. Appl Biochem Biotechnol 187(4):1131-1142 PMID:30903384
    • SGD Paper
    • DOI full text
    • PubMed
  • Duan Y, et al. (2018) Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J Biol Chem 293(40):15429-15438 PMID:30135205
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang J, et al. (2018) Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. J Agric Food Chem 66(17):4431-4438 PMID:29671328
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee J, et al. (2018) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease. Aging Cell 17(1) PMID:29130578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu T, et al. (2018) Predominant yeasts in Chinese traditional sourdough and their influence on aroma formation in Chinese steamed bread. Food Chem 242:404-411 PMID:29037707
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu T, et al. (2018) Heterologous production of levopimaric acid in Saccharomyces cerevisiae. Microb Cell Fact 17(1):114 PMID:30021574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hao H, et al. (2017) Using CRISPR/Cas9 for Large Fragment Deletions in Saccharomyces cerevisiae. Bio Protoc 7(14):e2415 PMID:34541145
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie ZX, et al. (2017) "Perfect" designer chromosome V and behavior of a ring derivative. Science 355(6329) PMID:28280151
    • SGD Paper
    • DOI full text
    • PubMed
  • Vachharajani VT, et al. (2016) Sirtuins Link Inflammation and Metabolism. J Immunol Res 2016:8167273 PMID:26904696
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ye W, et al. (2016) Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector. Front Microbiol 7:1067 PMID:27462304
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chang CW, et al. (2015) Light-RCV: a lightweight read coverage viewer for next generation sequencing data. BMC Bioinformatics 16 Suppl 18(Suppl 18):S11 PMID:26680734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He XW, et al. (2015) NOB1 is essential for the survival of RKO colorectal cancer cells. World J Gastroenterol 21(3):868-77 PMID:25624720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2015) Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb Cell Fact 14:70 PMID:25981595
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li X, et al. (2014) Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 111(9):1841-52 PMID:24752690
    • SGD Paper
    • DOI full text
    • PubMed
  • Li Y, et al. (2014) Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex. Genes Dev 28(11):1217-27 PMID:24835250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parreiras LS, et al. (2014) Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One 9(9):e107499 PMID:25222864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sato TK, et al. (2014) Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Appl Environ Microbiol 80(2):540-54 PMID:24212571
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang H, et al. (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169-173 PMID:25260180
    • SGD Paper
    • DOI full text
    • PubMed
  • Banerjee G, et al. (2012) Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 109(4):922-31 PMID:22125119
    • SGD Paper
    • DOI full text
    • PubMed
  • Ren X, et al. (2012) Evaluating de Bruijn graph assemblers on 454 transcriptomic data. PLoS One 7(12):e51188 PMID:23236450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tao X, et al. (2012) A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 7(2):e31235 PMID:22363590
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2010) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio 1(1) PMID:20689743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lv J, et al. (2007) Synthesis of pseudopeptides based L-tryptophan as a potential antimicrobial agent. Bioorg Med Chem Lett 17(6):1601-7 PMID:17257839
    • SGD Paper
    • DOI full text
    • PubMed
  • Li MH, et al. (2006) Effect of example weights on prediction of protein-protein interactions. Comput Biol Chem 30(5):386-92 PMID:16978924
    • SGD Paper
    • DOI full text
    • PubMed
  • Ondrovicová G, et al. (2005) Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 280(26):25103-10 PMID:15870080
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu B, et al. (2003) The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 306:45-55 PMID:12657466
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Q, et al. (1997) The cluA- mutant of Dictyostelium identifies a novel class of proteins required for dispersion of mitochondria. Proc Natl Acad Sci U S A 94(14):7308-13 PMID:9207087
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top