AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Klipp E
  • References

Author: Klipp E


References 70 references


No citations for this author.

Download References (.nbib)

  • Schreiber G, et al. (2025) Expression Dynamics and Genetic Compensation of Cell Cycle Paralogues in Saccharomyces cerevisiae. Cells 14(6) PMID:40136661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tummler K and Klipp E (2024) Data integration strategies for whole-cell modeling. FEMS Yeast Res 24 PMID:38544322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seeger M, et al. (2023) A dynamical stochastic model of yeast translation across the cell cycle. Heliyon 9(2):e13101 PMID:36793957
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adler SO, et al. (2022) A yeast cell cycle model integrating stress, signaling, and physiology. FEMS Yeast Res 22(1) PMID:35617157
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Altenburg T, et al. (2019) Osmolyte homeostasis controls single-cell growth rate and maximum cell size of Saccharomyces cerevisiae. NPJ Syst Biol Appl 5:34 PMID:31583116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Münzner U, et al. (2019) A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae. Nat Commun 10(1):1308 PMID:30899000
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teufel L, et al. (2019) A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle. Sci Rep 9(1):3343 PMID:30833602
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Amoussouvi A, et al. (2018) Transcriptional timing and noise of yeast cell cycle regulators-a single cell and single molecule approach. NPJ Syst Biol Appl 4:17 PMID:29844922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arellano VJ, et al. (2018) An Antimicrobial Peptide Induces FIG1-Dependent Cell Death During Cell Cycle Arrest in Yeast. Front Microbiol 9:1240 PMID:29963019
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stojanovski K, et al. (2017) Interaction Dynamics Determine Signaling and Output Pathway Responses. Cell Rep 19(1):136-149 PMID:28380353
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerber S, et al. (2016) A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae. PLoS Comput Biol 12(1):e1004703 PMID:26815455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goldenbogen B, et al. (2016) Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis. Open Biol 6(9) PMID:27605377
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schützhold V, et al. (2016) Computational Modeling of Lipid Metabolism in Yeast. Front Mol Biosci 3:57 PMID:27730126
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Spiesser T, et al. (2016) The MYpop toolbox: Putting yeast stress responses in cellular context on single cell and population scales. Biotechnol J 11(9):1158-68 PMID:26952199
    • SGD Paper
    • DOI full text
    • PubMed
  • Talemi SR, et al. (2016) Systems Level Analysis of the Yeast Osmo-Stat. Sci Rep 6:30950 PMID:27515486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Giese W, et al. (2015) Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys Biol 12(6):066014 PMID:26599916
    • SGD Paper
    • DOI full text
    • PubMed
  • Mori T, et al. (2015) Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Syst Biol 9:45 PMID:26259567
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Spiesser TW, et al. (2015) Bud-Localization of CLB2 mRNA Can Constitute a Growth Rate Dependent Daughter Sizer. PLoS Comput Biol 11(4):e1004223 PMID:25910075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Diener C, et al. (2014) Yeast mating and image-based quantification of spatial pattern formation. PLoS Comput Biol 10(6):e1003690 PMID:24967739
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Salcedo R, et al. (2014) Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps. FEBS J 281(7):1901-17 PMID:24529170
    • SGD Paper
    • DOI full text
    • PubMed
  • Hosiner D, et al. (2014) Impact of acute metal stress in Saccharomyces cerevisiae. PLoS One 9(1):e83330 PMID:24416162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodriguez Plaza JG, et al. (2014) Cell penetrating peptides and cationic antibacterial peptides: two sides of the same coin. J Biol Chem 289(21):14448-57 PMID:24706763
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uschner F and Klipp E (2014) Information processing in the adaptation of Saccharomyces cerevisiae to osmotic stress: an analysis of the phosphorelay system. Syst Synth Biol 8(4):297-306 PMID:26396653
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vaga S, et al. (2014) Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast. Mol Syst Biol 10(12):767 PMID:25492886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Hijas-Liste GM, et al. (2014) Global dynamic optimization approach to predict activation in metabolic pathways. BMC Syst Biol 8:1 PMID:24393148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Flöttmann M, et al. (2013) Reaction-contingency based bipartite Boolean modelling. BMC Syst Biol 7:58 PMID:23835289
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Linke C, et al. (2013) Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions. Front Physiol 4:173 PMID:23874301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petelenz-Kurdziel E, et al. (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput Biol 9(6):e1003084 PMID:23762021
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stanford NJ, et al. (2013) Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One 8(11):e79195 PMID:24324546
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Supady A, et al. (2013) A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 168(2):174-84 PMID:23850861
    • SGD Paper
    • DOI full text
    • PubMed
  • Barberis M, et al. (2012) Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv 30(1):108-30 PMID:21963604
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoffman-Sommer M, et al. (2012) Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates. Front Physiol 3:287 PMID:22934039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kühn C and Klipp E (2012) Zooming in on yeast osmoadaptation. Adv Exp Med Biol 736:293-310 PMID:22161336
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaber J, et al. (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8:622 PMID:23149687
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schreiber G, et al. (2012) Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach. FASEB J 26(2):546-54 PMID:22002907
    • SGD Paper
    • DOI full text
    • PubMed
  • Spiesser TW, et al. (2012) Size homeostasis can be intrinsic to growing cell populations and explained without size sensing or signalling. FEBS J 279(22):4213-30 PMID:23013467
    • SGD Paper
    • DOI full text
    • PubMed
  • Tiger CF, et al. (2012) A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 8:578 PMID:22531118
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adrover MÀ, et al. (2011) Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress. Sci Signal 4(192):ra63 PMID:21954289
    • SGD Paper
    • DOI full text
    • PubMed
  • Barberis M, et al. (2011) A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast. Mol Biosyst 7(10):2804-12 PMID:21717009
    • SGD Paper
    • DOI full text
    • PubMed
  • Klipp E (2011) Computational yeast systems biology: a case study for the MAP kinase cascade. Methods Mol Biol 759:323-43 PMID:21863496
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaber J, et al. (2011) Automated ensemble modeling with modelMaGe: analyzing feedback mechanisms in the Sho1 branch of the HOG pathway. PLoS One 6(3):e14791 PMID:21483474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stoma S, et al. (2011) STSE: Spatio-Temporal Simulation Environment Dedicated to Biology. BMC Bioinformatics 12:126 PMID:21527030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barberis M, et al. (2010) Kinetic modelling of DNA replication initiation in budding yeast. Genome Inform 24:1-20 PMID:22081585
    • SGD Paper
    • DOI full text
    • PubMed
  • Barberis M, et al. (2010) Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum? Curr Genomics 11(3):199-211 PMID:21037857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerber S, et al. (2010) Graphical analysis and experimental evaluation of Saccharomyces cerevisiae PTRK1|2 and PBMH1|2 promoter region. Genome Inform 22:11-20 PMID:20238415
    • SGD Paper
    • PubMed
  • Kühn C, et al. (2010) Formal representation of the high osmolarity glycerol pathway in yeast. Genome Inform 22:69-83 PMID:20238420
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaber J, et al. (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39(11):1547-56 PMID:20563574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Spiesser TW and Klipp E (2010) Different groups of metabolic genes cluster around early and late firing origins of replication in budding yeast. Genome Inform 24:179-92 PMID:22081599
    • SGD Paper
    • DOI full text
    • PubMed
  • Spiesser TW, et al. (2010) What influences DNA replication rate in budding yeast? PLoS One 5(4):e10203 PMID:20436919
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Waltermann C and Klipp E (2010) Signal integration in budding yeast. Biochem Soc Trans 38(5):1257-64 PMID:20863295
    • SGD Paper
    • DOI full text
    • PubMed
  • Waltermann C, et al. (2010) G1 and G2 arrests in response to osmotic shock are robust properties of the budding yeast cell cycle. Genome Inform 24:204-17 PMID:22081601
    • SGD Paper
    • DOI full text
    • PubMed
  • Zi Z, et al. (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5(3):e9522 PMID:20209100
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klipp E (2009) Timing matters. FEBS Lett 583(24):4013-8 PMID:19941864
    • SGD Paper
    • DOI full text
    • PubMed
  • Krantz M, et al. (2009) Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway. Mol Syst Biol 5:281 PMID:19536204
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Spiesser TW, et al. (2009) A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae. Mol Genet Genomics 282(1):25-35 PMID:19306105
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bruck J, et al. (2008) Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis. Genome Inform 20:1-14 PMID:19425118
    • SGD Paper
    • PubMed
  • Cvijovic M, et al. (2008) Exploratory simulation of cell ageing using hierarchical models. Genome Inform 21:114-25 PMID:19425152
    • SGD Paper
    • PubMed
  • Herrgård MJ, et al. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155-60 PMID:18846089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kühn C, et al. (2008) Exploring the impact of osmoadaptation on glycolysis using time-varying response-coefficients. Genome Inform 20:77-90 PMID:19425124
    • SGD Paper
    • PubMed
  • Schaber J and Klipp E (2008) Short-term volume and turgor regulation in yeast. Essays Biochem 45:147-59 PMID:18793130
    • SGD Paper
    • DOI full text
    • PubMed
  • Barberis M and Klipp E (2007) Insights into the network controlling the G1/S transition in budding yeast. Genome Inform 18:85-99 PMID:18546477
    • SGD Paper
    • PubMed
  • Barberis M, et al. (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64 PMID:17432928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borger S, et al. (2007) Automatically generated model of a metabolic network. Genome Inform 18:215-24 PMID:18546489
    • SGD Paper
    • PubMed
  • Klipp E (2007) Modelling dynamic processes in yeast. Yeast 24(11):943-59 PMID:17868189
    • SGD Paper
    • DOI full text
    • PubMed
  • Klipp E, et al. (2006) Corrigendum: Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 24(10):1293
    • SGD Paper
  • Schaber J, et al. (2006) A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast. FEBS J 273(15):3520-33 PMID:16884493
    • SGD Paper
    • DOI full text
    • PubMed
  • Klipp E, et al. (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975-82 PMID:16025103
    • SGD Paper
    • DOI full text
    • PubMed
  • Klipp E, et al. (2004) Inferring dynamic properties of biochemical reaction networks from structural knowledge. Genome Inform 15(1):125-37 PMID:15712116
    • SGD Paper
    • PubMed
  • Kofahl B and Klipp E (2004) Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10):831-50 PMID:15300679
    • SGD Paper
    • DOI full text
    • PubMed
  • Klipp E, et al. (2002) Prediction of temporal gene expression. Metabolic opimization by re-distribution of enzyme activities. Eur J Biochem 269(22):5406-13 PMID:12423338
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top