AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Heyer WD
  • References

Author: Heyer WD


References 95 references


No citations for this author.

Download References (.nbib)

  • Hung SH, et al. (2025) Multifaceted roles of H2B mono-ubiquitylation in D-loop metabolism during homologous recombination repair. Nucleic Acids Res 53(4) PMID:39945322
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hung SH, et al. (2025) Multifaceted roles of H2B mono-ubiquitylation in D-loop metabolism during homologous recombination repair. Nucleic Acids Res 53(4) PMID:39970303
    • SGD Paper
    • PubMed
  • Liu J, et al. (2025) Local structural dynamics of Rad51 protomers revealed by cryo-electron microscopy of Rad51-ssDNA filaments. Nucleic Acids Res 53(3) PMID:39898551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie B, et al. (2024) Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 43(14):3027-3043 PMID:38839993
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cerqueira PG, et al. (2023) Saccharomyces cerevisiae DNA polymerase IV overcomes Rad51 inhibition of DNA polymerase δ in Rad52-mediated direct-repeat recombination. Nucleic Acids Res 51(11):5547-5564 PMID:37070185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reitz D, et al. (2023) Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability. Genes Dev 37(13-14):621-639 PMID:37541760
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reitz D, et al. (2022) Detection of Homologous Recombination Intermediates via Proximity Ligation and Quantitative PCR in Saccharomyces cerevisiae. J Vis Exp PMID:36155960
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piazza A, et al. (2021) Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae. Methods Mol Biol 2153:535-554 PMID:32840803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwartz EK, et al. (2020) Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genet 16(5):e1008816 PMID:32469862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shah SS, et al. (2020) Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length. Elife 9 PMID:33185188
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shah SS, et al. (2020) Bisulfite treatment and single-molecule real-time sequencing reveal D-loop length, position, and distribution. Elife 9 PMID:33185185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jenkins SS, et al. (2019) Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae. Genetics 212(4):1133-1145 PMID:31142613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer D, et al. (2019) Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae. DNA Repair (Amst) 76:40-49 PMID:30818168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piazza A and Heyer WD (2019) Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 65(6):1333-1340 PMID:31123771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piazza A, et al. (2019) Dynamic Processing of Displacement Loops during Recombinational DNA Repair. Mol Cell 73(6):1255-1266.e4 PMID:30737186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tavares EM, et al. (2019) In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat Commun 10(1):4058 PMID:31492866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piazza A, et al. (2018) A Proximity Ligation-Based Method for Quantitative Measurement of D-Loop Extension in S. cerevisiae. Methods Enzymol 601:27-44 PMID:29523235
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu J, et al. (2017) Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops. Elife 6 PMID:28535142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ganai RA, et al. (2016) Strand displacement synthesis by yeast DNA polymerase ε. Nucleic Acids Res 44(17):8229-40 PMID:27325747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Janke R, et al. (2016) Nonsense-mediated decay regulates key components of homologous recombination. Nucleic Acids Res 44(11):5218-30 PMID:27001511
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasching CL, et al. (2015) Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 57(4):595-606 PMID:25699708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mason JM, et al. (2015) RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res 43(6):3180-96 PMID:25765654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer D, et al. (2015) DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 112(50):E6907-16 PMID:26607450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mukherjee S, et al. (2014) The Mus81-Mms4 structure-selective endonuclease requires nicked DNA junctions to undergo conformational changes and bend its DNA substrates for cleavage. Nucleic Acids Res 42(10):6511-22 PMID:24744239
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wright WD and Heyer WD (2014) Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation. Mol Cell 53(3):420-32 PMID:24486020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang XP, et al. (2013) A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity. PLoS One 8(12):e82184 PMID:24358152
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zinovyev A, et al. (2013) Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps. PLoS Comput Biol 9(4):e1003016 PMID:23592964
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñoz-Galván S, et al. (2012) Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange. Mol Cell Biol 32(9):1592-603 PMID:22354996
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schwartz EK, et al. (2012) Mus81-Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair. Mol Cell Biol 32(15):3065-80 PMID:22645308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ceballos SJ and Heyer WD (2011) Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 1809(9):509-23 PMID:21704205
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu J, et al. (2011) Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479(7372):245-8 PMID:22020281
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu J, et al. (2011) Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 46(3):240-70 PMID:21599536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heyer WD, et al. (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-39 PMID:20690856
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Janke R, et al. (2010) A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res 38(7):2302-13 PMID:20061370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ehmsen KT and Heyer WD (2009) A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by Saccharomyces cerevisiae Mus81-Mms4. Nucleic Acids Res 37(6):2026-36 PMID:19211663
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li X and Heyer WD (2009) RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37(2):638-46 PMID:19074197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li X, et al. (2009) PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol Cell 36(4):704-13 PMID:19941829
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang XP, et al. (2009) Loop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity. Nucleic Acids Res 37(1):158-71 PMID:19033358
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ehmsen KT and Heyer WD (2008) Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 36(7):2182-95 PMID:18281703
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heyer WD (2007) Biochemistry of eukaryotic homologous recombination. Top Curr Genet 17:95-133 PMID:21552479
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li X, et al. (2007) Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics. Nucleic Acids Res 35(12):4124-40 PMID:17567608
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bashkirov VI, et al. (2006) DNA damage-induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S. cerevisiae. Methods Enzymol 409:166-82 PMID:16793401
    • SGD Paper
    • DOI full text
    • PubMed
  • Chin JK, et al. (2006) Esc4/Rtt107 and the control of recombination during replication. DNA Repair (Amst) 5(5):618-28 PMID:16569515
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Galkin VE, et al. (2006) The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity. Structure 14(6):983-92 PMID:16765891
    • SGD Paper
    • DOI full text
    • PubMed
  • Herzberg K, et al. (2006) Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 26(22):8396-409 PMID:16966380
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heyer WD, et al. (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34(15):4115-25 PMID:16935872
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiianitsa K, et al. (2006) Terminal association of Rad54 protein with the Rad51-dsDNA filament. Proc Natl Acad Sci U S A 103(26):9767-72 PMID:16785421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Symington LS and Heyer WD (2006) Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev 20(18):2479-86 PMID:16980577
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang XP, et al. (2005) Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding. J Biol Chem 280(28):26303-11 PMID:15908697
    • SGD Paper
    • DOI full text
    • PubMed
  • Haghnazari E and Heyer WD (2004) The DNA damage checkpoint pathways exert multiple controls on the efficiency and outcome of the repair of a double-stranded DNA gap. Nucleic Acids Res 32(14):4257-68 PMID:15304563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haghnazari E and Heyer WD (2004) The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair (Amst) 3(7):769-76 PMID:15177185
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD (2004) A new deal for Holliday junctions. Nat Struct Mol Biol 11(2):117-9 PMID:14749772
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD (2004) Recombination: Holliday junction resolution and crossover formation. Curr Biol 14(2):R56-8 PMID:14738748
    • SGD Paper
    • DOI full text
    • PubMed
  • Bashkirov VI, et al. (2003) Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 23(4):1441-52 PMID:12556502
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heyer WD, et al. (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28(10):548-57 PMID:14559184
    • SGD Paper
    • DOI full text
    • PubMed
  • Mallory JC, et al. (2003) Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair (Amst) 2(9):1041-64 PMID:12967660
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmuckli-Maurer J, et al. (2003) Genome instability in rad54 mutants of Saccharomyces cerevisiae. Nucleic Acids Res 31(3):1013-23 PMID:12560498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fabre F, et al. (2002) Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 99(26):16887-92 PMID:12475932
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiianitsa K, et al. (2002) Rad54 protein exerts diverse modes of ATPase activity on duplex DNA partially and fully covered with Rad51 protein. J Biol Chem 277(48):46205-15 PMID:12359723
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim PM, et al. (2002) Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54. Nucleic Acids Res 30(13):2727-35 PMID:12087154
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Solinger JA, et al. (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10(5):1175-88 PMID:12453424
    • SGD Paper
    • DOI full text
    • PubMed
  • Walsh L, et al. (2002) DNA-damage induction of RAD54 can be regulated independently of the RAD9- and DDC1-dependent checkpoints that regulate RNR2. Curr Genet 41(4):232-40 PMID:12172964
    • SGD Paper
    • DOI full text
    • PubMed
  • Haber JE and Heyer WD (2001) The fuss about Mus81. Cell 107(5):551-4 PMID:11733053
    • SGD Paper
    • DOI full text
    • PubMed
  • Solinger JA and Heyer WD (2001) Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 98(15):8447-53 PMID:11459988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Solinger JA, et al. (2001) Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. J Mol Biol 307(5):1207-21 PMID:11292336
    • SGD Paper
    • DOI full text
    • PubMed
  • Bashkirov VI, et al. (2000) DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 20(12):4393-404 PMID:10825202
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boddy MN, et al. (2000) Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol Cell Biol 20(23):8758-66 PMID:11073977
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gos P, et al. (2000) No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 21(7):515-23 PMID:11015116
    • SGD Paper
    • DOI full text
    • PubMed
  • Interthal H and Heyer WD (2000) MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 263(5):812-27 PMID:10905349
    • SGD Paper
    • DOI full text
    • PubMed
  • Mazin AV, et al. (2000) Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 6(3):583-92 PMID:11030338
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmuckli-Maurer J and Heyer WD (2000) Meiotic recombination in RAD54 mutants of Saccharomyces cerevisiae. Chromosoma 109(1-2):86-93 PMID:10855498
    • SGD Paper
    • DOI full text
    • PubMed
  • Clever B, et al. (1999) Specific negative effects resulting from elevated levels of the recombinational repair protein Rad54p in Saccharomyces cerevisiae. Yeast 15(9):721-40 PMID:10398342
    • SGD Paper
    • DOI full text
    • PubMed
  • Khasanov FK, et al. (1999) A new recombinational DNA repair gene from Schizosaccharomyces pombe with homology to Escherichia coli RecA. Genetics 152(4):1557-72 PMID:10430583
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmuckli-Maurer J and Heyer WD (1999) The Saccharomyces cerevisiae RAD54 gene is important but not essential for natural homothallic mating-type switching. Mol Gen Genet 260(6):551-8 PMID:9928934
    • SGD Paper
    • DOI full text
    • PubMed
  • Solinger JA, et al. (1999) Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol Cell Biol 19(9):5930-42 PMID:10454540
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bashkirov VI, et al. (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136(4):761-73 PMID:9049243
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clever B, et al. (1997) Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J 16(9):2535-44 PMID:9171366
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walmsley RM, et al. (1997) Green fluorescent protein as a reporter for the DNA damage-induced gene RAD54 in Saccharomyces cerevisiae. Yeast 13(16):1535-45 PMID:9509573
    • SGD Paper
    • DOI full text
    • PubMed
  • Kanaar R, et al. (1996) Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr Biol 6(7):828-38 PMID:8805304
    • SGD Paper
    • DOI full text
    • PubMed
  • Santos-Rosa H, et al. (1996) The yeast HRS1 gene encodes a polyglutamine-rich nuclear protein required for spontaneous and hpr1-induced deletions between direct repeats. Genetics 142(3):705-16 PMID:8849881
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bashkirov VI, et al. (1995) Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae. Chromosoma 104(3):215-22 PMID:8529461
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD, et al. (1995) Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol Cell Biol 15(5):2728-36 PMID:7739553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holler A, et al. (1995) Use of monoclonal antibodies in the functional characterization of the Saccharomyces cerevisiae Sep1 protein. Eur J Biochem 231(2):329-36 PMID:7543408
    • SGD Paper
    • DOI full text
    • PubMed
  • Interthal H, et al. (1995) A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae. EMBO J 14(6):1057-66 PMID:7720696
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bähler J, et al. (1994) Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase. Chromosoma 103(2):129-41 PMID:8055710
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD (1994) The search for the right partner: homologous pairing and DNA strand exchange proteins in eukaryotes. Experientia 50(3):223-33 PMID:8143796
    • SGD Paper
    • DOI full text
    • PubMed
  • Käslan E and Heyer WD (1994) Schizosaccharomyces pombe fatty acid synthase mediates DNA strand exchange in vitro. J Biol Chem 269(19):14103-10 PMID:8188691
    • SGD Paper
    • PubMed
  • Käslin E and Heyer WD (1994) A multifunctional exonuclease from vegetative Schizosaccharomyces pombe cells exhibiting in vitro strand exchange activity. J Biol Chem 269(19):14094-102 PMID:8188690
    • SGD Paper
    • PubMed
  • Bezzubova OY, et al. (1993) Identification of a chicken RAD52 homologue suggests conservation of the RAD52 recombination pathway throughout the evolution of higher eukaryotes. Nucleic Acids Res 21(25):5945-9 PMID:8290357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Erdile LF, et al. (1991) Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. J Biol Chem 266(18):12090-8 PMID:2050703
    • SGD Paper
    • PubMed
  • Heyer WD, et al. (1991) Saccharomyces cerevisiae proteins involved in hybrid DNA formation in vitro. Biochimie 73(2-3):269-76 PMID:1883885
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD, et al. (1990) An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J 9(7):2321-9 PMID:2192864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heyer WD and Kolodner RD (1989) Purification and characterization of a protein from Saccharomyces cerevisiae that binds tightly to single-stranded DNA and stimulates a cognate strand exchange protein. Biochemistry 28(7):2856-62 PMID:2663063
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyer WD, et al. (1988) Renaturation of DNA by a Saccharomyces cerevisiae protein that catalyzes homologous pairing and strand exchange. J Biol Chem 263(29):15189-95 PMID:3049603
    • SGD Paper
    • PubMed
  • Wright A, et al. (1986) Vectors for the construction of gene banks and the integration of cloned genes in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Plasmid 15(2):156-8 PMID:3010354
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top