AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Heitman J
  • References

Author: Heitman J


References 106 references


No citations for this author.

Download References (.nbib)

  • Boekhout T, et al. (2021) The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Divers 109(1):27-55 PMID:34720775
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J (2019) E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 213(1):1-7 PMID:31488591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Navarro-Mendoza MI, et al. (2019) Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Curr Biol 29(22):3791-3802.e6 PMID:31679929
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Son YE, et al. (2019) Pbp1-Interacting Protein Mkt1 Regulates Virulence and Sexual Reproduction in Cryptococcus neoformans. Front Cell Infect Microbiol 9:355 PMID:31681631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kingsbury JM, et al. (2016) Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Hum Mol Genet 25(16):3524-3538 PMID:27427385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shekhar-Guturja T, et al. (2016) Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat Chem Biol 12(10):867-75 PMID:27571477
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim H, et al. (2015) Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Sci Rep 5:8767 PMID:25739925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kingsbury JM, et al. (2014) Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 196(4):1077-89 PMID:24514902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Billmyre RB, et al. (2013) RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res 21(6-7):561-72 PMID:24173579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SC and Heitman J (2012) Function of Cryptococcus neoformans KAR7 (SEC66) in karyogamy during unisexual and opposite-sex mating. Eukaryot Cell 11(6):783-94 PMID:22544906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Idnurm A and Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology (Reading) 156(Pt 8):2393-2407 PMID:20488877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kozubowski L and Heitman J (2010) Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 75(3):658-75 PMID:19943902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reedy JL, et al. (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47(2):107-16 PMID:19755168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shertz CA, et al. (2010) Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 11:510 PMID:20863387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2010) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio 1(1) PMID:20689743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hsueh YP, et al. (2009) A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 28(9):1220-33 PMID:19322200
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bastidas RJ, et al. (2008) Signaling cascades as drug targets in model and pathogenic fungi. Curr Opin Investig Drugs 9(8):856-64 PMID:18666033
    • SGD Paper
    • PMC full text
    • PubMed
  • Rutherford JC, et al. (2008) A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 19(7):3028-39 PMID:18434596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teichert S, et al. (2008) Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot Cell 7(2):187-201 PMID:18083831
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32(6):1010-32 PMID:18811658
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hsueh YP, et al. (2007) G protein signaling governing cell fate decisions involves opposing Galpha subunits in Cryptococcus neoformans. Mol Biol Cell 18(9):3237-49 PMID:17581859
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nielsen K and Heitman J (2007) Sex and virulence of human pathogenic fungi. Adv Genet 57:143-73 PMID:17352904
    • SGD Paper
    • DOI full text
    • PubMed
  • Harashima T, et al. (2006) The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 22(6):819-830 PMID:16793550
    • SGD Paper
    • DOI full text
    • PubMed
  • Walton FJ, et al. (2006) Conserved elements of the RAM signaling pathway establish cell polarity in the basidiomycete Cryptococcus neoformans in a divergent fashion from other fungi. Mol Biol Cell 17(9):3768-80 PMID:16775005
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2006) G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17(2):667-79 PMID:16291861
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arévalo-Rodríguez M and Heitman J (2005) Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryot Cell 4(1):17-29 PMID:15643056
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Harashima T and Heitman J (2005) Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 16(10):4557-71 PMID:16030250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J (2005) Cell biology. A fungal Achilles' heel. Science 309(5744):2175-6 PMID:16195450
    • SGD Paper
    • DOI full text
    • PubMed
  • Hicks JK, et al. (2005) Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans. Eukaryot Cell 4(12):1971-81 PMID:16339715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arevalo-Rodriguez M, et al. (2004) Prolyl isomerases in yeast. Front Biosci 9:2420-46 PMID:15353296
    • SGD Paper
    • DOI full text
    • PubMed
  • Arévalo-Rodríguez M, et al. (2004) FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Eukaryot Cell 3(5):1287-96 PMID:15470257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bahn YS, et al. (2004) Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 3(6):1476-91 PMID:15590822
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Onyewu C, et al. (2004) The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72(12):7330-3 PMID:15557662
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang P, et al. (2004) A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr Genet 46(5):247-55 PMID:15503029
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraus PR and Heitman J (2003) Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem Biophys Res Commun 311(4):1151-7 PMID:14623301
    • SGD Paper
    • DOI full text
    • PubMed
  • Kraus PR, et al. (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 48(5):1377-87 PMID:12787363
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Young LY, et al. (2003) Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 47(9):2717-24 PMID:12936965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alspaugh JA, et al. (2002) Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 1(1):75-84 PMID:12455973
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fox DS and Heitman J (2002) Good fungi gone bad: the corruption of calcineurin. Bioessays 24(10):894-903 PMID:12325122
    • SGD Paper
    • DOI full text
    • PubMed
  • Harashima T and Heitman J (2002) The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol Cell 10(1):163-73 PMID:12150916
    • SGD Paper
    • DOI full text
    • PubMed
  • Pan X and Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22(12):3981-93 PMID:12024012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen WC, et al. (2002) Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1(3):366-77 PMID:12455985
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chung N, et al. (2001) Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. J Biol Chem 276(38):35614-21 PMID:11468289
    • SGD Paper
    • DOI full text
    • PubMed
  • Cruz MC, et al. (2001) Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45(11):3162-70 PMID:11600372
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cutler NS, et al. (2001) The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell 12(12):4103-13 PMID:11739804
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • D'Souza CA and Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25(3):349-64 PMID:11348689
    • SGD Paper
    • DOI full text
    • PubMed
  • Fox DS, et al. (2001) Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol Microbiol 39(4):835-49 PMID:11251806
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu L, et al. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410(6827):490-4 PMID:11260719
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang P, et al. (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep 2(6):511-8 PMID:11415984
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alspaugh JA, et al. (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36(2):352-65 PMID:10792722
    • SGD Paper
    • DOI full text
    • PubMed
  • Arévalo-Rodríguez M, et al. (2000) Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J 19(14):3739-49 PMID:10899127
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chung N, et al. (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275(23):17229-32 PMID:10764732
    • SGD Paper
    • DOI full text
    • PubMed
  • Görlach J, et al. (2000) Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J 19(14):3618-29 PMID:10899116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J and Agre P (2000) A new face of the Rhesus antigen. Nat Genet 26(3):258-9 PMID:11062455
    • SGD Paper
    • DOI full text
    • PubMed
  • Lengeler KB, et al. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64(4):746-85 PMID:11104818
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lengeler KB, et al. (2000) Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc Natl Acad Sci U S A 97(26):14455-60 PMID:11121047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu L, et al. (2000) Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci U S A 97(9):4672-6 PMID:10758168
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC, et al. (2000) The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154(2):609-22 PMID:10655215
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC, et al. (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11(1):183-99 PMID:10637301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pan X and Heitman J (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20(22):8364-72 PMID:11046133
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pan X, et al. (2000) Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3(6):567-72 PMID:11121775
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang P, et al. (2000) The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 20(1):352-62 PMID:10594037
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu X, et al. (2000) The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J 19(14):3727-38 PMID:10899126
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Young LY, et al. (2000) A STE12 homolog is required for mating but dispensable for filamentation in candida lusitaniae. Genetics 155(1):17-29 PMID:10790381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alarcon CM, et al. (1999) Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. Mol Biol Cell 10(8):2531-46 PMID:10436010
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arndt C, et al. (1999) Secretion of FK506/FK520 and rapamycin by Streptomyces inhibits the growth of competing Saccharomyces cerevisiae and Cryptococcus neoformans. Microbiology (Reading) 145 ( Pt 8):1989-2000 PMID:10463165
    • SGD Paper
    • DOI full text
    • PubMed
  • Cardenas ME, et al. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13(24):3271-9 PMID:10617575
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cardenas ME, et al. (1999) Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 12(4):583-611 PMID:10515904
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cruz MC, et al. (1999) Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19(6):4101-12 PMID:10330150
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cutler NS, et al. (1999) TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals. Mol Cell Endocrinol 155(1-2):135-42 PMID:10580846
    • SGD Paper
    • DOI full text
    • PubMed
  • Del Poeta M, et al. (1999) Topoisomerase I is essential in Cryptococcus neoformans: role In pathobiology and as an antifungal target. Genetics 152(1):167-78 PMID:10224251
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dolinski KJ and Heitman J (1999) Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase. Genetics 151(3):935-44 PMID:10049913
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hemenway CS and Heitman J (1999) Lic4, a nuclear phosphoprotein that cooperates with calcineurin to regulate cation homeostasis in Saccharomyces cerevisiae. Mol Gen Genet 261(2):388-401 PMID:10102375
    • SGD Paper
    • DOI full text
    • PubMed
  • Pan X and Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19(7):4874-87 PMID:10373537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scholz C, et al. (1999) R73A and H144Q mutants of the yeast mitochondrial cyclophilin Cpr3 exhibit a low prolyl isomerase activity in both peptide and protein-folding assays. FEBS Lett 443(3):367-9 PMID:10025965
    • SGD Paper
    • DOI full text
    • PubMed
  • Sudarshan S, et al. (1999) Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. Fungal Genet Biol 27(1):36-48 PMID:10413613
    • SGD Paper
    • DOI full text
    • PubMed
  • Yue C, et al. (1999) The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153(4):1601-15 PMID:10581270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alspaugh JA, et al. (1998) Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet Biol 25(1):1-14 PMID:9806801
    • SGD Paper
    • DOI full text
    • PubMed
  • Dolinski KJ, et al. (1998) CNS1 encodes an essential p60/Sti1 homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90. Mol Cell Biol 18(12):7344-52 PMID:9819421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC and Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17(5):1236-47 PMID:9482721
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC and Heitman J (1998) Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150(4):1443-57 PMID:9832522
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zaragoza D, et al. (1998) Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18(8):4463-70 PMID:9671456
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alarcón CM and Heitman J (1997) FKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae. Mol Cell Biol 17(10):5968-75 PMID:9315655
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alspaugh JA, et al. (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11(23):3206-17 PMID:9389652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cutler NS, et al. (1997) STT4 is an essential phosphatidylinositol 4-kinase that is a target of wortmannin in Saccharomyces cerevisiae. J Biol Chem 272(44):27671-7 PMID:9346907
    • SGD Paper
    • DOI full text
    • PubMed
  • Dolinski K, et al. (1997) Functions of FKBP12 and mitochondrial cyclophilin active site residues in vitro and in vivo in Saccharomyces cerevisiae. Mol Biol Cell 8(11):2267-80 PMID:9362068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dolinski K, et al. (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94(24):13093-8 PMID:9371805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC and Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16(23):7008-18 PMID:9384580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alarcon CM, et al. (1996) Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast. Genes Dev 10(3):279-88 PMID:8595879
    • SGD Paper
    • DOI full text
    • PubMed
  • Hemenway CS and Heitman J (1996) Immunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast. J Biol Chem 271(31):18527-34 PMID:8702500
    • SGD Paper
    • DOI full text
    • PubMed
  • Koller A, et al. (1996) Regional bivalent-univalent pairing versus trivalent pairing of a trisomic chromosome in Saccharomyces cerevisiae. Genetics 144(3):957-66 PMID:8913741
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cardenas ME and Heitman J (1995) FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. EMBO J 14(23):5892-907 PMID:8846782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cardenas ME, et al. (1995) Mutations that perturb cyclophilin A ligand binding pocket confer cyclosporin A resistance in Saccharomyces cerevisiae. J Biol Chem 270(36):20997-1002 PMID:7673124
    • SGD Paper
    • DOI full text
    • PubMed
  • Cardenas ME, et al. (1995) Targets of immunophilin-immunosuppressant complexes are distinct highly conserved regions of calcineurin A. EMBO J 14(12):2772-83 PMID:7540976
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hemenway CS, et al. (1995) vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly. Genetics 141(3):833-44 PMID:8582630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lorenz MC and Heitman J (1995) TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 270(46):27531-7 PMID:7499212
    • SGD Paper
    • DOI full text
    • PubMed
  • Lorenz MC, et al. (1995) Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158(1):113-7 PMID:7789793
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu D, et al. (1995) Myristoylation of calcineurin B is not required for function or interaction with immunophilin-immunosuppressant complexes in the yeast Saccharomyces cerevisiae. J Biol Chem 270(42):24831-8 PMID:7559604
    • SGD Paper
    • DOI full text
    • PubMed
  • Breuder T, et al. (1994) Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A 91(12):5372-6 PMID:7515500
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cardenas ME, et al. (1994) Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J 13(24):5944-57 PMID:7529175
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J, et al. (1993) Identification of Immunosuppressive Drug Targets in Yeast Methods Enzymol 5:176-187
    • SGD Paper
  • Heitman J, et al. (1993) The immunosuppressant FK506 inhibits amino acid import in Saccharomyces cerevisiae. Mol Cell Biol 13(8):5010-9 PMID:7687745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Davis ES, et al. (1992) A yeast cyclophilin gene essential for lactate metabolism at high temperature. Proc Natl Acad Sci U S A 89(23):11169-73 PMID:1454795
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J, et al. (1992) Proline isomerases at the crossroads of protein folding, signal transduction, and immunosuppression. New Biol 4(5):448-60 PMID:1515410
    • SGD Paper
    • PubMed
  • Heitman J, et al. (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(5):1948-52 PMID:1705713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heitman J, et al. (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905-9 PMID:1715094
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top