Literature Help
TFC6 / YDR362C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 134
- Aliases
-
tau 91
3
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Talyzina A, et al. (2023) Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Mol Cell 83(15):2641-2652.e7 PMID:37402369
- Wang Z, et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7 PMID:30192228
- Wang Q and Donze D (2016) Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae. Gene 594(1):108-116 PMID:27601258
- Male G, et al. (2015) Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nat Commun 6:7387 PMID:26060179
- Korde A, et al. (2014) Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae. Genetics 196(2):427-38 PMID:24336746
- Okada N, et al. (2014) Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection. FEMS Yeast Res 14(3):425-34 PMID:24410772
- Wang Q, et al. (2014) Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biol 12:89 PMID:25348158
- Hiraga S, et al. (2012) TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 23(14):2741-54 PMID:22496415
- Kleinschmidt RA, et al. (2011) Autoregulation of an RNA polymerase II promoter by the RNA polymerase III transcription factor III C (TF(III)C) complex. Proc Natl Acad Sci U S A 108(20):8385-9 PMID:21536876
- Ducrot C, et al. (2006) Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 281(17):11685-92 PMID:16517597
- Guffanti E, et al. (2006) A minimal promoter for TFIIIC-dependent in vitro transcription of snoRNA and tRNA genes by RNA polymerase III. J Biol Chem 281(33):23945-57 PMID:16787917
- Mylona A, et al. (2006) Structure of the tau60/Delta tau91 subcomplex of yeast transcription factor IIIC: insights into preinitiation complex assembly. Mol Cell 24(2):221-32 PMID:17052456
- Mylona A, et al. (2006) Expression, proteolytic analysis, reconstitution, and crystallization of the tau60/tau91 subcomplex of yeast TFIIIC. Protein Expr Purif 45(2):255-61 PMID:16115780
- Rozenfeld S and Thuriaux P (2001) Genetic interactions within TFIIIC, the promoter-binding factor of yeast RNA polymerase III. Mol Genet Genomics 265(4):705-10 PMID:11459191
- Arrebola R, et al. (1998) Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol Cell Biol 18(1):1-9 PMID:9418847
- Burnol AF, et al. (1993) TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362(6419):475-7 PMID:8464480
- Braun BR, et al. (1992) Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J Mol Biol 228(4):1063-77 PMID:1474578
- Felts SJ, et al. (1990) Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol 10(5):2390-401 PMID:2183033
- Kassavetis GA, et al. (1990) S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60(2):235-45 PMID:2404611
- Braun BR, et al. (1989) Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc Natl Acad Sci U S A 86(8):2530-4 PMID:2649882
- Challice JM and Segall J (1989) Transcription of the 5 S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region. J Biol Chem 264(33):20060-7 PMID:2684967
- Kassavetis GA, et al. (1989) Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 9(6):2551-66 PMID:2668737
- Baker RE, et al. (1986) Effects of tRNATyr point mutations on the binding of yeast RNA polymerase III transcription factor C. J Biol Chem 261(12):5275-82 PMID:3633923
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Belkevich AE, et al. (2024) Minimization and complete loss of general transcription factor proteins in the intracellular parasite Encephalitozoon cuniculi. Transcription 15(3-5):97-113 PMID:38722258
- Van Damme P, et al. (2023) Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 299(2):102824 PMID:36567016
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Yamada N, et al. (2020) Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes. Nucleic Acids Res 48(20):11215-11226 PMID:32747934
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Nagarajavel V, et al. (2013) Global 'bootprinting' reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 41(17):8135-43 PMID:23856458
- Gilmore JM, et al. (2012) Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 11(4):M111.011544 PMID:22199229
- Mahapatra S, et al. (2011) Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes. Nucleic Acids Res 39(10):4023-34 PMID:21266479
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Nguyen VC, et al. (2010) Replication stress checkpoint signaling controls tRNA gene transcription. Nat Struct Mol Biol 17(8):976-81 PMID:20639887
- Carter R and Drouin G (2009) The evolutionary rates of eukaryotic RNA polymerases and of their transcription factors are affected by the level of concerted evolution of the genes they transcribe. Mol Biol Evol 26(11):2515-20 PMID:19633229
- Tavenet A, et al. (2009) Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 106(34):14265-70 PMID:19706510
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Ferrari R and Dieci G (2008) The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cell Mol Biol Lett 13(1):112-8 PMID:17965971
- Moqtaderi Z and Struhl K (2008) Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast. Yeast 25(4):287-92 PMID:18338317
- Simms TA, et al. (2008) TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. Eukaryot Cell 7(12):2078-86 PMID:18849469
- Soragni E and Kassavetis GA (2008) Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 283(39):26568-76 PMID:18667429
- Dumay-Odelot H, et al. (2007) Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 282(23):17179-89 PMID:17409385
- Rothfels K, et al. (2007) Zinc fingers 1 and 7 of yeast TFIIIA are essential for assembly of a functional transcription complex on the 5 S RNA gene. Nucleic Acids Res 35(14):4869-81 PMID:17626045
- Beskow A and Wright AP (2006) Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts. Yeast 23(13):929-35 PMID:17072884
- Dieci G, et al. (2006) Distinct modes of TATA box utilization by the RNA polymerase III transcription machineries from budding yeast and higher plants. Gene 379:12-25 PMID:16839711
- Guffanti E, et al. (2006) Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae. J Biol Chem 281(39):29155-64 PMID:16816405
- Kassavetis GA and Steiner DF (2006) Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo. J Biol Chem 281(11):7445-51 PMID:16407207
- Marck C, et al. (2006) The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 34(6):1816-35 PMID:16600899
- Shivaswamy S and Bhargava P (2006) Positioned nucleosomes due to sequential remodeling of the yeast U6 small nuclear RNA chromatin are essential for its transcriptional activation. J Biol Chem 281(15):10461-72 PMID:16461347
- Budovskaya YV, et al. (2005) An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 102(39):13933-8 PMID:16172400
- Ferrari R, et al. (2004) Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci U S A 101(37):13442-7 PMID:15347814
- Moqtaderi Z and Struhl K (2004) Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol 24(10):4118-27 PMID:15121834
- Shivaswamy S, et al. (2004) High-level activation of transcription of the yeast U6 snRNA gene in chromatin by the basal RNA polymerase III transcription factor TFIIIC. Mol Cell Biol 24(9):3596-606 PMID:15082757
- Jourdain S, et al. (2003) The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 278(12):10450-7 PMID:12533520
- Dumay-Odelot H, et al. (2002) Multiple roles of the tau131 subunit of yeast transcription factor IIIC (TFIIIC) in TFIIIB assembly. Mol Cell Biol 22(1):298-308 PMID:11739742
- Persinger J and Bartholomew B (2001) Site-directed DNA photoaffinity labeling of RNA polymerase III transcription complexes. Methods Mol Biol 148:363-81 PMID:11357598
- Huang Y, et al. (2000) Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 275(40):31480-7 PMID:10906331
- Llorente B, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487(1):101-12 PMID:11152893
- Yieh L, et al. (2000) The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem 275(38):29800-7 PMID:10882723
- Bhargava P and Kassavetis GA (1999) Abortive initiation by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 274(37):26550-6 PMID:10473618
- Persinger J, et al. (1999) Spatial organization of the core region of yeast TFIIIB-DNA complexes. Mol Cell Biol 19(7):5218-34 PMID:10373570
- Connolly CM and Sandmeyer SB (1997) RNA polymerase III interferes with Ty3 integration. FEBS Lett 405(3):305-11 PMID:9108309
- Kumar A, et al. (1997) Functional dissection of the B" component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription. Mol Cell Biol 17(4):1868-80 PMID:9121435
- Huet J, et al. (1996) RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae. Methods Enzymol 273:249-67 PMID:8791617
- Joazeiro CA, et al. (1996) Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev 10(6):725-39 PMID:8598299
- Lannutti BJ, et al. (1996) Probing the protein-DNA contacts of a yeast RNA polymerase III transcription complex in a crude extract: solid phase synthesis of DNA photoaffinity probes containing a novel photoreactive deoxycytidine analog. Biochemistry 35(30):9821-31 PMID:8703956
- Persinger J and Bartholomew B (1996) Mapping the contacts of yeast TFIIIB and RNA polymerase III at various distances from the major groove of DNA by DNA photoaffinity labeling. J Biol Chem 271(51):33039-46 PMID:8955150
- Bardeleben C, et al. (1994) Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J Mol Biol 235(4):1193-205 PMID:8308884
- Bartholomew B, et al. (1994) Probing close DNA contacts of RNA polymerase III transcription complexes with the photoactive nucleoside 4-thiodeoxythymidine. J Biol Chem 269(27):18090-5 PMID:8027070
- Joazeiro CA, et al. (1994) Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes. Mol Cell Biol 14(4):2798-808 PMID:8139577
- Matsuzaki H, et al. (1994) Analysis of RNA chain elongation and termination by Saccharomyces cerevisiae RNA polymerase III. J Mol Biol 235(4):1173-92 PMID:8308883
- Bartholomew B, et al. (1993) Orientation and topography of RNA polymerase III in transcription complexes. Mol Cell Biol 13(2):942-52 PMID:8423814
- Conesa C, et al. (1993) On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. J Biol Chem 268(24):18047-52 PMID:7688737
- Milne CA and Segall J (1993) Mapping regions of yeast transcription factor IIIA required for DNA binding, interaction with transcription factor IIIC, and transcription activity. J Biol Chem 268(15):11364-71 PMID:8496187
- Archambault J, et al. (1992) The deduced sequence of the transcription factor TFIIIA from Saccharomyces cerevisiae reveals extensive divergence from Xenopus TFIIIA. J Biol Chem 267(5):3282-8 PMID:1737784
- Huet J and Sentenac A (1992) The TATA-binding protein participates in TFIIIB assembly on tRNA genes. Nucleic Acids Res 20(24):6451-4 PMID:1480467
- Kassavetis GA, et al. (1992) Formation of open and elongating transcription complexes by RNA polymerase III. J Mol Biol 226(1):47-58 PMID:1619662
- Bartholomew B, et al. (1991) Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC. Mol Cell Biol 11(10):5181-9 PMID:1922038
- Léveillard T, et al. (1991) Saccharomyces cerevisiae transcription factors IIIB and IIIC bend the DNA of a tRNA(Gln) gene. J Biol Chem 266(8):5162-8 PMID:2002052
- Parsons MC and Weil PA (1990) Purification and characterization of Saccharomyces cerevisiae transcription factor TFIIIC. Polypeptide composition defined with polyclonal antibodies. J Biol Chem 265(9):5095-103 PMID:2180956
- Gabrielsen OS, et al. (1989) Two polypeptide chains in yeast transcription factor tau interact with DNA. J Biol Chem 264(13):7505-11 PMID:2651441
- Johnson DL, et al. (1989) Interaction of yeast transcription factor IIIC with dimeric Schizosaccharomyces pombe tRNA(Ser)-tRNA(Met) genes. J Biol Chem 264(32):19221-7 PMID:2808421
- Wang CK and Weil PA (1989) Purification and characterization of Saccharomyces cerevisiae transcription factor IIIA. J Biol Chem 264(2):1092-9 PMID:2642897
- Segall J (1986) Assembly of a yeast 5 S RNA gene transcription complex. J Biol Chem 261(25):11578-84 PMID:3528144
- Stillman DJ, et al. (1984) Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions. J Biol Chem 259(12):7955-62 PMID:6234307
Reviews
No reviews curated.
Download References (.nbib)
- Cheung S, et al. (2018) Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 9:14 PMID:29713390
- Didychuk AL, et al. (2018) The life of U6 small nuclear RNA, from cradle to grave. RNA 24(4):437-460 PMID:29367453
- Graczyk D, et al. (2018) Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. Biochim Biophys Acta Gene Regul Mech 1861(4):320-329 PMID:29378333
- Shukla A and Bhargava P (2018) Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. Biochim Biophys Acta Gene Regul Mech 1861(4):295-309 PMID:29313808
- Acker J, et al. (2013) Yeast RNA polymerase III transcription factors and effectors. Biochim Biophys Acta 1829(3-4):283-95 PMID:23063749
- Kirkland JG, et al. (2013) TFIIIC bound DNA elements in nuclear organization and insulation. Biochim Biophys Acta 1829(3-4):418-24 PMID:23000638
- Pascali C and Teichmann M (2013) RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 61:261-87 PMID:23150255
- Wichtowska D, et al. (2013) An interplay between transcription, processing, and degradation determines tRNA levels in yeast. Wiley Interdiscip Rev RNA 4(6):709-22 PMID:24039171
- Donze D (2012) Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark. Gene 493(2):169-75 PMID:21986035
- Van Bortle K and Corces VG (2012) tDNA insulators and the emerging role of TFIIIC in genome organization. Transcription 3(6):277-84 PMID:22889843
- Sun JQ, et al. (2011) Boundaries of transcriptionally silent chromatin in Saccharomyces cerevisiae. Genes Genet Syst 86(2):73-81 PMID:21670546
- Clelland BW and Schultz MC (2010) Genome stability control by checkpoint regulation of tRNA gene transcription. Transcription 1(3):115-125 PMID:21326884
- McFarlane RJ and Whitehall SK (2009) tRNA genes in eukaryotic genome organization and reorganization. Cell Cycle 8(19):3102-6 PMID:19738425
- Ong CT and Corces VG (2009) Insulators as mediators of intra- and inter-chromosomal interactions: a common evolutionary theme. J Biol 8(8):73 PMID:19725934
- Kassavetis GA and Geiduschek EP (2006) Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem Soc Trans 34(Pt 6):1082-7 PMID:17073756
- Moir RD and Willis IM (2004) Tetratricopeptide repeats of Tfc4 and a limiting step in the assembly of the initiation factor TFIIIB. Adv Protein Chem 67:93-121 PMID:14969725
- Schramm L and Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16(20):2593-620 PMID:12381659
- Geiduschek EP and Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310(1):1-26 PMID:11419933
- Huang Y and Maraia RJ (2001) Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 29(13):2675-90 PMID:11433012
- Chédin S, et al. (1998) The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. Cold Spring Harb Symp Quant Biol 63:381-9 PMID:10384303
- Sprague KU (1992) New twists in class III transcription. Curr Opin Cell Biol 4(3):475-9 PMID:1497919
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Huang Y, et al. (2000) Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 275(40):31480-7 PMID:10906331
- Arrebola R, et al. (1998) Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol Cell Biol 18(1):1-9 PMID:9418847
- Burnol AF, et al. (1993) TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362(6419):475-7 PMID:8464480
- Braun BR, et al. (1992) Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J Mol Biol 228(4):1063-77 PMID:1474578
- Felts SJ, et al. (1990) Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol 10(5):2390-401 PMID:2183033
- Kassavetis GA, et al. (1990) S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60(2):235-45 PMID:2404611
- Braun BR, et al. (1989) Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc Natl Acad Sci U S A 86(8):2530-4 PMID:2649882
- Baker RE, et al. (1986) Effects of tRNATyr point mutations on the binding of yeast RNA polymerase III transcription factor C. J Biol Chem 261(12):5275-82 PMID:3633923
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Wang Z, et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7 PMID:30192228
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- van Pel DM, et al. (2013) Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork. G3 (Bethesda) 3(2):273-82 PMID:23390603
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Gilmore JM, et al. (2012) Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 11(4):M111.011544 PMID:22199229
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Gong Y, et al. (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275 PMID:19536198
- Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-6 PMID:16429126
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Mylona A, et al. (2006) Expression, proteolytic analysis, reconstitution, and crystallization of the tau60/tau91 subcomplex of yeast TFIIIC. Protein Expr Purif 45(2):255-61 PMID:16115780
- Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
- Jourdain S, et al. (2003) The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 278(12):10450-7 PMID:12533520
- Gavin AC, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141-7 PMID:11805826
- Bon E, et al. (2000) A network of proteins around Rvs167p and Rvs161p, two proteins related to the yeast actin cytoskeleton. Yeast 16(13):1229-41 PMID:10992286
- Arrebola R, et al. (1998) Tau91, an essential subunit of yeast transcription factor IIIC, cooperates with tau138 in DNA binding. Mol Cell Biol 18(1):1-9 PMID:9418847
- Manaud N, et al. (1998) A chimeric subunit of yeast transcription factor IIIC forms a subcomplex with tau95. Mol Cell Biol 18(6):3191-200 PMID:9584160
- Conesa C, et al. (1993) On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. J Biol Chem 268(24):18047-52 PMID:7688737
- Baker RE, et al. (1986) Effects of tRNATyr point mutations on the binding of yeast RNA polymerase III transcription factor C. J Biol Chem 261(12):5275-82 PMID:3633923
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Leutert M, et al. (2023) The regulatory landscape of the yeast phosphoproteome. Nat Struct Mol Biol 30(11):1761-1773 PMID:37845410
- Van Damme P, et al. (2023) Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 299(2):102824 PMID:36567016
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
- Plank M, et al. (2021) Phosphoproteomic Effects of Acute Depletion of PP2A Regulatory Subunit Cdc55. Proteomics 21(1):e2000166 PMID:32970932
- Ohnuki S and Ohya Y (2018) High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biol 16(5):e2005130 PMID:29768403
- Chakrabortee S, et al. (2016) Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell 167(2):369-381.e12 PMID:27693355
- Okada N, et al. (2014) Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection. FEMS Yeast Res 14(3):425-34 PMID:24410772
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549