AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Xiao W
  • References

Author: Xiao W


References 174 references


No citations for this author.

Download References (.nbib)

  • Gao Q, et al. (2025) Systematic Engineering To Enhance Citronellol Production in Yeast. J Agric Food Chem 73(24):15189-15198 PMID:40478647
    • SGD Paper
    • DOI full text
    • PubMed
  • Shan M, et al. (2025) Engineered β-Carotene Hydroxylase with Excellent Thermostability Promotes Zeaxanthin Production in Yeast. J Agric Food Chem 73(20):12319-12327 PMID:40358126
    • SGD Paper
    • DOI full text
    • PubMed
  • Shi Y, et al. (2025) Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synth Syst Biotechnol 10(1):58-67 PMID:39247801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang H, et al. (2025) Efficient nepetalactone production in Saccharomyces cerevisiae via metabolic engineering and bioprocess optimization. Bioresour Technol 428:132440 PMID:40158864
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang T, et al. (2025) Engineering the cytochrome P450 to enhance parthenolide production in Saccharomyces cerevisiae. Synth Syst Biotechnol 10(3):950-958 PMID:40488110
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Du Y, et al. (2024) Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. mLife 3(3):391-402 PMID:39359679
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hao H, et al. (2024) Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size. Proc Natl Acad Sci U S A 121(47):e2413486121 PMID:39536088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rybchuk J and Xiao W (2024) Dual activities of a silencing information regulator complex in yeast transcriptional regulation and DNA-damage response. mLife 3(2):207-218 PMID:38948145
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shu Y, et al. (2024) Systematic Engineering to Enhance β-Myrcene Production in Yeast. J Agric Food Chem 72(35):19395-19402 PMID:39176472
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang J, et al. (2024) Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast. J Agric Food Chem 72(18):10459-10468 PMID:38666490
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (2024) Enhanced synthesis of S-adenosyl-L-methionine through combinatorial metabolic engineering and Bayesian optimization in Saccharomyces cerevisiae. Biotechnol J 19(3):e2300650 PMID:38479990
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao R, et al. (2024) High titer (>100 g/L) ethanol production from pretreated corn stover hydrolysate by modified yeast strains. Bioresour Technol 391(Pt B):129993 PMID:37944621
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan L, et al. (2023) Genetic Dissection of Budding Yeast PCNA Mutations Responsible for the Regulated Recruitment of Srs2 Helicase. mBio 14(2):e0031523 PMID:36861970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumasaruge I, et al. (2023) Systematic characterization of Brassica napus UBC13 genes involved in DNA-damage response and K63-linked polyubiquitination. BMC Plant Biol 23(1):24 PMID:36631796
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li K, et al. (2023) [Advances in abscisic acid biosynthesis]. Sheng Wu Gong Cheng Xue Bao 39(6):2190-2203 PMID:37401589
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin A, et al. (2023) Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol Toxicol 39(4):1531-1547 PMID:35809138
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang H, et al. (2023) Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast. J Agric Food Chem 71(10):4319-4327 PMID:36857414
    • SGD Paper
    • DOI full text
    • PubMed
  • Wu N, et al. (2023) Modular Pathway Compartmentalization for Agroclavine Overproduction in Saccharomyces cerevisiae. ACS Synth Biol 12(4):1133-1145 PMID:36987837
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang C, et al. (2023) Elimination of enzymes catalysis compartmentalization enhancing taxadiene production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 11:1141272 PMID:36890913
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang H, et al. (2023) Investigation of Genome Biology by Synthetic Genome Engineering. Bioengineering (Basel) 10(2) PMID:36829765
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou K, et al. (2023) Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in Saccharomyces cerevisiae via Enhanced Precursors Supply and Utilization. J Agric Food Chem 71(8):3821-3831 PMID:36802623
    • SGD Paper
    • DOI full text
    • PubMed
  • Kang J, et al. (2022) Enhancement and mapping of tolerance to salt stress and 5-fluorocytosine in synthetic yeast strains via SCRaMbLE. Synth Syst Biotechnol 7(3):869-877 PMID:35601823
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li H, et al. (2022) Combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production in simultaneous saccharification and fermentation of corn stover. Bioresour Technol 345:126414 PMID:34838629
    • SGD Paper
    • DOI full text
    • PubMed
  • Shi Y, et al. (2022) Production of Plant Sesquiterpene Lactone Parthenolide in the Yeast Cell Factory. ACS Synth Biol 11(7):2473-2483 PMID:35723427
    • SGD Paper
    • DOI full text
    • PubMed
  • Villamil M, et al. (2022) The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains. Mol Cell Proteomics 21(1):100175 PMID:34763062
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng C and Xiao W (2022) Molecular cloning and functional characterization of UBC13 and MMS2 from Candida albicans. Gene 816:146163 PMID:34995738
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan L and Xiao W (2021) Study Essential Gene Functions by Plasmid Shuffling. Methods Mol Biol 2196:53-62 PMID:32889712
    • SGD Paper
    • DOI full text
    • PubMed
  • Jiang G, et al. (2021) A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae. Metab Eng 66:51-59 PMID:33857581
    • SGD Paper
    • DOI full text
    • PubMed
  • Kong M, et al. (2021) Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates. Bioresour Technol 337:125487 PMID:34320766
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu H, et al. (2021) Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microb Biotechnol 14(6):2605-2616 PMID:32990403
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu L, et al. (2021) Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates. Front Bioeng Biotechnol 9:655272 PMID:33748094
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sun Y, et al. (2021) Metabolic and Evolutionary Engineering of Diploid Yeast for the Production of First- and Second-Generation Ethanol. Front Bioeng Biotechnol 9:835928 PMID:35155419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tian X, et al. (2021) Genomic Promoter Shuffling by Using Recyclable Cassettes. Methods Mol Biol 2196:39-51 PMID:32889711
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang Q, et al. (2021) Scarless Genomic Protein Labeling in Saccharomyces cerevisiae. Methods Mol Biol 2196:63-75 PMID:32889713
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Y, et al. (2021) Minimize the Xylitol Production in Saccharomyces cerevisiae by Balancing the Xylose Redox Metabolic Pathway. Front Bioeng Biotechnol 9:639595 PMID:33718341
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bai Z, et al. (2020) Drosophila Uev1a is dually required for Ben-dependent DNA-damage response and fly mobility. Cell Signal 74:109719 PMID:32702441
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan L, et al. (2020) DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 477(14):2655-2677 PMID:32726436
    • SGD Paper
    • DOI full text
    • PubMed
  • Feng Y, et al. (2020) Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnol Adv 41:107538 PMID:32222423
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo H, et al. (2020) Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. Plant Sci 297:110518 PMID:32563457
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin A, et al. (2020) Yeast chromatin remodeling complexes and their roles in transcription. Curr Genet 66(4):657-670 PMID:32239283
    • SGD Paper
    • DOI full text
    • PubMed
  • Song T, et al. (2020) Crocetin Overproduction in Engineered Saccharomyces cerevisiae via Tuning Key Enzymes Coupled With Precursor Engineering. Front Bioeng Biotechnol 8:578005 PMID:33015027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Z and Xiao W (2020) Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage. Curr Genet 66(5):1019-1028 PMID:32623695
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (2020) Specific and Unbiased Detection of Polyubiquitination via a Sensitive Non-Antibody Approach. Anal Chem 92(1):1074-1080 PMID:31820937
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu L, et al. (2020) Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresour Technol 313:123724 PMID:32586644
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen Y, et al. (2019) Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Appl Environ Microbiol 85(7) PMID:30683746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang L, et al. (2019) Comparative study of the insoluble and soluble Ulp1 protease constructs as Carrier free and dependent protein immobilizates. J Biosci Bioeng 127(1):23-29 PMID:30001877
    • SGD Paper
    • DOI full text
    • PubMed
  • Li J, et al. (2019) Structure of Ddi2, a highly inducible detoxifying metalloenzyme from Saccharomyces cerevisiae. J Biol Chem 294(27):10674-10685 PMID:31152065
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li Y, et al. (2019) Loss of heterozygosity by SCRaMbLEing. Sci China Life Sci 62(3):381-393 PMID:30900161
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (2019) Co-expression of cellulase and xylanase genes in Sacchromyces cerevisiae toward enhanced bioethanol production from corn stover. Bioengineered 10(1):513-521 PMID:31661645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2019) In-Depth Two-Stage Transcriptional Reprogramming and Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Bioethanol Production from Xylose with Acetate. J Agric Food Chem 67(43):12002-12012 PMID:31595746
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang J, et al. (2019) Recombinant expression, purification and characterization of acetylated LysargiNase from Escherichia coli with high activity and stability. Rapid Commun Mass Spectrom 33(12):1067-1075 PMID:30900783
    • SGD Paper
    • DOI full text
    • PubMed
  • Bai Z, et al. (2018) Drosophila bendless catalyzes K63-linked polyubiquitination and is involved in the response to DNA damage. Mutat Res 808:39-47 PMID:29518634
    • SGD Paper
    • DOI full text
    • PubMed
  • Fan Q, et al. (2018) Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in saccharomyces cerevisiae. Curr Genet 64(4):889-899 PMID:29396601
    • SGD Paper
    • DOI full text
    • PubMed
  • Jin J, et al. (2018) Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol Biofuels 11:230 PMID:30159030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li F, et al. (2018) Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet 64(2):459-468 PMID:28918480
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin A, et al. (2018) Utilization of a Strongly Inducible DDI2 Promoter to Control Gene Expression in Saccharomyces cerevisiae. Front Microbiol 9:2736 PMID:30505295
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (2018) Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock. J Proteome Res 17(5):1812-1825 PMID:29611422
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang X, et al. (2018) Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. PLoS One 13(4):e0195410 PMID:29634727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang X, et al. (2018) Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102(16):7207-7217 PMID:29946930
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao H, et al. (2018) A Role for the Respiratory Chain in Regulating Meiosis Initiation in Saccharomyces cerevisiae. Genetics 208(3):1181-1194 PMID:29301906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chai F, et al. (2017) Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microb Cell Fact 16(1):54 PMID:28356104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Q, et al. (2017) A method for labeling proteins with tags at the native genomic loci in budding yeast. PLoS One 12(5):e0176184 PMID:28459859
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Q, et al. (2017) Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions. BMC Plant Biol 17(1):126 PMID:28716105
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen Y, et al. (2016) Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15(1):113 PMID:27329233
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan L and Xiao W (2016) The Pol30-K196 residue plays a critical role in budding yeast DNA postreplication repair through interaction with Rad18. DNA Repair (Amst) 47:42-48 PMID:27707542
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo H, et al. (2016) Three Brachypodium distachyon Uev1s Promote Ubc13-Mediated Lys63-Linked Polyubiquitination and Confer Different Functions. Front Plant Sci 7:1551 PMID:27803708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiong Y, et al. (2016) An NGS-Independent Strategy for Proteome-Wide Identification of Single Amino Acid Polymorphisms by Mass Spectrometry. Anal Chem 88(5):2784-91 PMID:26810586
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu X, et al. (2016) Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1. Nucleic Acids Res 44(11):5231-45 PMID:27001510
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2016) Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses. Yeast 33(1):5-19 PMID:26389527
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang X, et al. (2016) An ensemble framework for identifying essential proteins. BMC Bioinformatics 17(1):322 PMID:27557880
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li J, et al. (2015) Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J Biol Chem 290(20):12664-75 PMID:25847245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li S, et al. (2015) OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H(+) secretion mediated by PM-H(+)-ATPase. Plant Sci 233:61-71 PMID:25711814
    • SGD Paper
    • DOI full text
    • PubMed
  • Shui W, et al. (2015) Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae. Mol Cell Proteomics 14(7):1885-97 PMID:25926660
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu X, et al. (2015) Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mutat Res Rev Mutat Res 764:43-50 PMID:26041265
    • SGD Paper
    • DOI full text
    • PubMed
  • Xue C, et al. (2015) Similarities and differences between Arabidopsis PCNA1 and PCNA2 in complementing the yeast DNA damage tolerance defect. DNA Repair (Amst) 28:28-36 PMID:25728088
    • SGD Paper
    • DOI full text
    • PubMed
  • Ball LG and Xiao W (2014) Detection of Protein Posttranslational Modifications from Whole-Cell Extracts in Saccharomyces cerevisiae. Methods Mol Biol 1163:249-55 PMID:24841313
    • SGD Paper
    • DOI full text
    • PubMed
  • Ball LG, et al. (2014) The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One 9(10):e109292 PMID:25343618
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ball LG, et al. (2014) The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair (Amst) 16:74-83 PMID:24674630
    • SGD Paper
    • DOI full text
    • PubMed
  • Biss M, et al. (2014) Isolation of yeast nucleic acids. Methods Mol Biol 1163:15-21 PMID:24841296
    • SGD Paper
    • DOI full text
    • PubMed
  • Blackwell S, et al. (2014) Spontaneous mutagenesis assay. Methods Mol Biol 1163:193-9 PMID:24841308
    • SGD Paper
    • DOI full text
    • PubMed
  • Cao L, et al. (2014) Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab Eng 24:150-9 PMID:24858789
    • SGD Paper
    • DOI full text
    • PubMed
  • Rout MK, et al. (2014) Stochastic gate dynamics regulate the catalytic activity of ubiquitination enzymes. J Am Chem Soc 136(50):17446-58 PMID:25423605
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu X, et al. (2014) Yeast survival and growth assays. Methods Mol Biol 1163:183-91 PMID:24841307
    • SGD Paper
    • DOI full text
    • PubMed
  • Qin Z, et al. (2013) DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res 41(15):7356-69 PMID:23761444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tian X, et al. (2013) Novel method for genomic promoter shuffling by using recyclable cassettes. Appl Environ Microbiol 79(22):7042-7 PMID:24014535
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wei T, et al. (2013) Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosens Bioelectron 44:138-45 PMID:23416315
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu X, et al. (2013) The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 8(12):e81371 PMID:24339919
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wen R, et al. (2012) Zebrafish Mms2 promotes K63-linked polyubiquitination and is involved in p53-mediated DNA-damage response. DNA Repair (Amst) 11(2):157-66 PMID:22055568
    • SGD Paper
    • DOI full text
    • PubMed
  • Zang Y, et al. (2012) Rice UBC13, a candidate housekeeping gene, is required for K63-linked polyubiquitination and tolerance to DNA damage. Rice (N Y) 5(1):24 PMID:27234244
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang M, et al. (2011) Inactivation of YAP1 enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system to a broad range of DNA-damaging agents. Toxicol Sci 120(2):310-21 PMID:21205635
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang W, et al. (2011) Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 585(18):2786-94 PMID:21536034
    • SGD Paper
    • DOI full text
    • PubMed
  • Li J, et al. (2010) Zebrafish Ubc13 is required for Lys63-linked polyubiquitination and DNA damage tolerance. Mol Cell Biochem 343(1-2):173-82 PMID:20556485
    • SGD Paper
    • DOI full text
    • PubMed
  • Pastushok L, et al. (2010) Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res 38(15):5047-58 PMID:20385585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seok J, et al. (2010) Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships. BMC Bioinformatics 11 Suppl 1(Suppl 1):S8 PMID:20122245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang M, et al. (2010) Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicol Sci 113(2):401-11 PMID:19884123
    • SGD Paper
    • DOI full text
    • PubMed
  • Ball LG, et al. (2009) The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol Microbiol 73(1):89-102 PMID:19496932
    • SGD Paper
    • DOI full text
    • PubMed
  • Andersen PL, et al. (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18(1):162-73 PMID:18157158
    • SGD Paper
    • DOI full text
    • PubMed
  • Anderson HJ, et al. (2008) Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2. Plant J 55(6):895-908 PMID:18494853
    • SGD Paper
    • DOI full text
    • PubMed
  • Fu Y, et al. (2008) DNA damage-induced gene expression in Saccharomyces cerevisiae. FEMS Microbiol Rev 32(6):908-26 PMID:18616603
    • SGD Paper
    • DOI full text
    • PubMed
  • Fu Y, et al. (2008) Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133(4):601-11 PMID:18485869
    • SGD Paper
    • DOI full text
    • PubMed
  • Rostek C, et al. (2008) Involvement of homologous recombination repair after proton-induced DNA damage. Mutagenesis 23(2):119-29 PMID:18267950
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang M, et al. (2008) Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 103(1):68-76 PMID:18281714
    • SGD Paper
    • DOI full text
    • PubMed
  • Hanna M, et al. (2007) Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat Res 625(1-2):164-76 PMID:17681555
    • SGD Paper
    • DOI full text
    • PubMed
  • Pastushok L, et al. (2007) Two Mms2 residues cooperatively interact with ubiquitin and are critical for Lys63 polyubiquitination in vitro and in vivo. FEBS Lett 581(28):5343-8 PMID:17964296
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbour L and Xiao W (2006) Synthetic lethal screen. Methods Mol Biol 313:161-9 PMID:16118433
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbour L and Xiao W (2006) Mating type regulation of cellular tolerance to DNA damage is specific to the DNA post-replication repair and mutagenesis pathway. Mol Microbiol 59(2):637-50 PMID:16390456
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbour L, et al. (2006) DNA damage checkpoints are involved in postreplication repair. Genetics 174(4):1789-800 PMID:17057245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barbour L, et al. (2006) Mutagenesis. Methods Mol Biol 313:121-7 PMID:16118430
    • SGD Paper
    • DOI full text
    • PubMed
  • Fu Y and Xiao W (2006) Study of transcriptional regulation using a reporter gene assay. Methods Mol Biol 313:257-64 PMID:16118439
    • SGD Paper
    • DOI full text
    • PubMed
  • Fu Y and Xiao W (2006) Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reductase genes. Nucleic Acids Res 34(6):1876-83 PMID:16600900
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hanna M and Xiao W (2006) Isolation of nucleic acids. Methods Mol Biol 313:15-20 PMID:16118419
    • SGD Paper
    • DOI full text
    • PubMed
  • Wen R, et al. (2006) Arabidopsis thaliana UBC13: implication of error-free DNA damage tolerance and Lys63-linked polyubiquitylation in plants. Plant Mol Biol 61(1-2):241-53 PMID:16786304
    • SGD Paper
    • DOI full text
    • PubMed
  • Andersen PL, et al. (2005) Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J Cell Biol 170(5):745-55 PMID:16129784
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hanna M, et al. (2004) Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. DNA Repair (Amst) 3(1):51-9 PMID:14697759
    • SGD Paper
    • DOI full text
    • PubMed
  • Prokisch H, et al. (2004) Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2(6):e160 PMID:15208715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wooff J, et al. (2004) The TRAF6 RING finger domain mediates physical interaction with Ubc13. FEBS Lett 566(1-3):229-33 PMID:15147900
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Y and Xiao W (2004) Pdr3 is required for DNA damage induction of MAG1 and DDI1 via a bi-directional promoter element. Nucleic Acids Res 32(17):5066-75 PMID:15452273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barbour L and Xiao W (2003) Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat Res 532(1-2):137-55 PMID:14643434
    • SGD Paper
    • DOI full text
    • PubMed
  • Bawa S and Xiao W (2003) A single amino acid substitution in MSH5 results in DNA alkylation tolerance. Gene 315:177-82 PMID:14557077
    • SGD Paper
    • DOI full text
    • PubMed
  • Fu Y and Xiao W (2003) Functional domains required for the Saccharomyces cerevisiae Mus81-Mms4 endonuclease complex formation and nuclear localization. DNA Repair (Amst) 2(12):1435-47 PMID:14642571
    • SGD Paper
    • DOI full text
    • PubMed
  • Jia X and Xiao W (2003) Compromised DNA repair enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system. Toxicol Sci 75(1):82-8 PMID:12805645
    • SGD Paper
    • DOI full text
    • PubMed
  • Ashley C, et al. (2002) Roles of mouse UBC13 in DNA postreplication repair and Lys63-linked ubiquitination. Gene 285(1-2):183-91 PMID:12039045
    • SGD Paper
    • DOI full text
    • PubMed
  • Broomfield S and Xiao W (2002) Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res 30(3):732-9 PMID:11809886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brown M, et al. (2002) Structural and functional conservation of error-free DNA postreplication repair in Schizosaccharomyces pombe. DNA Repair (Amst) 1(11):869-80 PMID:12531016
    • SGD Paper
    • DOI full text
    • PubMed
  • Hryciw T, et al. (2002) MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol Genet Genomics 266(5):848-57 PMID:11810260
    • SGD Paper
    • DOI full text
    • PubMed
  • Jia X, et al. (2002) A stable and sensitive genotoxic testing system based on DNA damage induced gene expression in Saccharomyces cerevisiae. Mutat Res 519(1-2):83-92 PMID:12160894
    • SGD Paper
    • DOI full text
    • PubMed
  • Villalobo E, et al. (2002) A homologue of CROC-1 in a ciliated protist (Sterkiella histriomuscorum) testifies to the ancient origin of the ubiquitin-conjugating enzyme variant family. Mol Biol Evol 19(1):39-48 PMID:11752188
    • SGD Paper
    • DOI full text
    • PubMed
  • Broomfield S, et al. (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486(3):167-84 PMID:11459630
    • SGD Paper
    • DOI full text
    • PubMed
  • Franko J, et al. (2001) Molecular cloning and functional characterization of two murine cDNAs which encode Ubc variants involved in DNA repair and mutagenesis. Biochim Biophys Acta 1519(1-2):70-7 PMID:11406273
    • SGD Paper
    • DOI full text
    • PubMed
  • McKenna S, et al. (2001) Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J Biol Chem 276(43):40120-6 PMID:11504715
    • SGD Paper
    • DOI full text
    • PubMed
  • Moraes TF, et al. (2001) Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Nat Struct Biol 8(8):669-73 PMID:11473255
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (2001) Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutat Res 487(3-4):137-47 PMID:11738940
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Y and Xiao W (2001) Two alternative cell cycle checkpoint pathways differentially control DNA damage-dependent induction of MAG1 and DDI1 expression in yeast. Mol Genet Genomics 266(3):436-44 PMID:11713673
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbour L, et al. (2000) Improving synthetic lethal screens by regulating the yeast centromere sequence. Genome 43(5):910-7 PMID:11081983
    • SGD Paper
    • DOI full text
    • PubMed
  • Brusky J, et al. (2000) UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr Genet 37(3):168-74 PMID:10794173
    • SGD Paper
    • DOI full text
    • PubMed
  • Chamankhah M, et al. (2000) The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155(2):569-76 PMID:10835381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (2000) The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics 155(4):1633-41 PMID:10924462
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bawa S and Xiao W (1999) Methionine reduces spontaneous and alkylation-induced mutagenesis in Saccharomyces cerevisiae cells deficient in O6-methylguanine-DNA methyltransferase. Mutat Res 430(1):99-107 PMID:10592321
    • SGD Paper
    • DOI full text
    • PubMed
  • Chamankhah M and Xiao W (1999) Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res 27(10):2072-9 PMID:10219078
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (1999) Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat Res 435(1):1-11 PMID:10526212
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1999) REV3 is required for spontaneous but not methylation damage-induced mutagenesis of Saccharomyces cerevisiae cells lacking O6-methylguanine DNA methyltransferase. Mutat Res 431(1):155-65 PMID:10656494
    • SGD Paper
    • DOI full text
    • PubMed
  • Broomfield S, et al. (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A 95(10):5678-83 PMID:9576943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chamankhah M and Xiao W (1998) Molecular cloning and genetic characterization of the Saccharomyces cerevisiae NGS1/MRE11 gene. Curr Genet 34(5):368-74 PMID:9871118
    • SGD Paper
    • DOI full text
    • PubMed
  • Chamankhah M, et al. (1998) Isolation of hMRE11B: failure to complement yeast mre11 defects due to species-specific protein interactions. Gene 225(1-2):107-16 PMID:9931460
    • SGD Paper
    • DOI full text
    • PubMed
  • Kunz BA, et al. (1998) Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Environ Mol Mutagen 32(2):173-8 PMID:9776180
    • SGD Paper
    • DOI full text
    • PubMed
  • Poirier MA, et al. (1998) The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 5(9):765-9 PMID:9731768
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Chow BL (1998) Synergism between yeast nucleotide and base excision repair pathways in the protection against DNA methylation damage. Curr Genet 33(2):92-9 PMID:9506896
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1998) The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) define a structurally and functionally conserved Ubc-like protein family. Nucleic Acids Res 26(17):3908-14 PMID:9705497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (1998) Mms4, a putative transcriptional (co)activator, protects Saccharomyces cerevisiae cells from endogenous and environmental DNA damage. Mol Gen Genet 257(6):614-23 PMID:9604884
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1998) Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase zeta. Carcinogenesis 19(5):945-9 PMID:9635887
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Y and Xiao W (1998) Differential regulation of two closely clustered yeast genes, MAG1 and DDI1, by cell-cycle checkpoints. Nucleic Acids Res 26(23):5402-8 PMID:9826765
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bawa S and Xiao W (1997) A mutation in the MSH5 gene results in alkylation tolerance. Cancer Res 57(13):2715-20 PMID:9205082
    • SGD Paper
    • PubMed
  • Liu Y and Xiao W (1997) Bidirectional regulation of two DNA-damage-inducible genes, MAG1 and DDI1, from Saccharomyces cerevisiae. Mol Microbiol 23(4):777-89 PMID:9157248
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu Y, et al. (1997) UAS(MAG1), a yeast cis-acting element that regulates the expression of MAG1, is located within the protein coding region of DDI1. Mol Gen Genet 255(5):533-42 PMID:9294038
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Rank GH (1996) The 2 micron plasmid of laboratory yeast strains is a type-1/type-2 hybrid. Yeast 12(8):809-13 PMID:8813767
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1996) The repair of DNA methylation damage in Saccharomyces cerevisiae. Curr Genet 30(6):461-8 PMID:8939806
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Fontanie T (1995) Expression of the human MGMT O6-methylguanine DNA methyltransferase gene in a yeast alkylation-sensitive mutant: its effects on both exogenous and endogenous DNA alkylation damage. Mutat Res 336(2):133-42 PMID:7885384
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1995) DNA mismatch repair mutants do not increase N-methyl-N'-nitro-N-nitrosoguanidine tolerance in O6-methylguanine DNA methyltransferase-deficient yeast cells. Carcinogenesis 16(8):1933-9 PMID:7634424
    • SGD Paper
    • DOI full text
    • PubMed
  • Arndt GM, et al. (1994) Antisense RNA regulation of the ILV2 gene in yeast: a correction. Curr Genet 25(3):289 PMID:7923417
    • SGD Paper
    • DOI full text
    • PubMed
  • Rank GH, et al. (1994) Evidence for Darwinian selection of the 2-micron plasmid STB locus in Saccharomyces cerevisiae. Genome 37(1):12-8 PMID:8181732
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1994) The MAG1* 3-methyladenine DNA glycosylase gene is closely linked to the SPT15 TATA-binding TFIID gene on chromosome V-R in Saccharomyces cerevisiae. Yeast 10(5):687-91 PMID:7941752
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1994) UBP5 encodes a putative yeast ubiquitin-specific protease that is related to the human Tre-2 oncogene product. Yeast 10(11):1497-502 PMID:7871889
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Samson L (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci U S A 90(6):2117-21 PMID:7681584
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (1993) A common element involved in transcriptional regulation of two DNA alkylation repair genes (MAG and MGT1) of Saccharomyces cerevisiae. Mol Cell Biol 13(12):7213-21 PMID:8246943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W and Samson L (1992) The Saccharomyces cerevisiae MGT1 DNA repair methyltransferase gene: its promoter and entire coding sequence, regulation and in vivo biological functions. Nucleic Acids Res 20(14):3599-606 PMID:1641326
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W, et al. (1991) Sequence diversity of yeast 2 microns RAF gene and its co-evolution with STB and REP1. Gene 101(1):75-80 PMID:1676387
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1991) Evidence for cis- and trans-acting element coevolution of the 2-microns circle genome in Saccharomyces cerevisiae. J Mol Evol 32(2):145-52 PMID:1672551
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W, et al. (1991) Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene. EMBO J 10(8):2179-86 PMID:2065659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao W and Rank GH (1990) An improved method for yeast 2 microns plasmid curing. Gene 88(2):241-5 PMID:2189785
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Rank GH (1990) Branched chain amino acid regulation of the ILV2 locus in Saccharomyces cerevisiae. Genome 33(4):596-603 PMID:2227406
    • SGD Paper
    • DOI full text
    • PubMed
  • Rank GH, et al. (1989) FLP-FRT mediated intrachromosomal recombination on a tandemly duplicated YEp integrant at the ILV2 locus of chromosome XIII in Saccharomyces cerevisiae. Curr Genet 15(2):107-12 PMID:2663188
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Rank GH (1989) The construction of recombinant industrial yeasts free of bacterial sequences by directed gene replacement into a nonessential region of the genome. Gene 76(1):99-107 PMID:2545533
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Rank GH (1988) Generation of an ilv bradytrophic phenocopy in yeast by antisense RNA. Curr Genet 13(4):283-9 PMID:2455608
    • SGD Paper
    • DOI full text
    • PubMed
  • Xiao W and Rank GH (1988) The yeast ILV2 gene is under general amino acid control. Genome 30(6):984-6 PMID:3069583
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top