AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Sychrová H
  • References

Author: Sychrová H


References 61 references


No citations for this author.

Download References (.nbib)

  • Kodedová M, et al. (2025) The replacement of ergosterol with alternative sterols affects the physiological function of the yeast plasma membrane, including its H+-ATPase activity and resistance to antifungal drugs. Microbes Infect 27(2):105409 PMID:39187062
    • SGD Paper
    • DOI full text
    • PubMed
  • Petrisková L, et al. (2024) Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress. Biochim Biophys Acta Mol Cell Biol Lipids 1869(7):159523 PMID:38866087
    • SGD Paper
    • DOI full text
    • PubMed
  • Zimmermannová O, et al. (2024) The Hydrophilic C-terminus of Yeast Plasma-membrane Na+/H+ Antiporters Impacts Their Ability to Transport K. J Mol Biol 436(4):168443 PMID:38211892
    • SGD Paper
    • DOI full text
    • PubMed
  • Antunes M, et al. (2023) The Hrk1 kinase is a determinant of acetic acid tolerance in yeast by modulating H+ and K+ homeostasis. Microb Cell 10(12):261-276 PMID:38053573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Masaryk J, et al. (2023) The second intracellular loop of the yeast Trk1 potassium transporter is involved in regulation of activity, and interaction with 14-3-3 proteins. Comput Struct Biotechnol J 21:2705-2716 PMID:37168872
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Papoušková K, et al. (2023) Heterologous expression reveals unique properties of Trk K+ importers from nonconventional biotechnologically relevant yeast species together with their potential to support Saccharomyces cerevisiae growth. Yeast 40(2):68-83 PMID:36539385
    • SGD Paper
    • DOI full text
    • PubMed
  • Masaryk J and Sychrová H (2022) Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals. J Fungi (Basel) 8(5) PMID:35628688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dauss E, et al. (2021) Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie Van Leeuwenhoek 114(7):1069-1077 PMID:33844120
    • SGD Paper
    • DOI full text
    • PubMed
  • Dušková M, et al. (2021) Minority potassium-uptake system Trk2 has a crucial role in yeast survival of glucose-induced cell death. Microbiology (Reading) 167(6) PMID:34170815
    • SGD Paper
    • DOI full text
    • PubMed
  • Csáky Z, et al. (2020) Squalene lipotoxicity in a lipid droplet-less yeast mutant is linked to plasma membrane dysfunction. Yeast 37(1):45-62 PMID:31826302
    • SGD Paper
    • DOI full text
    • PubMed
  • Balkan C, et al. (2019) Genomewide Elucidation of Drug Resistance Mechanisms for Systemically Used Antifungal Drugs Amphotericin B, Caspofungin, and Voriconazole in the Budding Yeast. Antimicrob Agents Chemother 63(9) PMID:31209012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zemančíková J, et al. (2019) Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance. Lett Appl Microbiol 68(1):81-86 PMID:30382581
    • SGD Paper
    • DOI full text
    • PubMed
  • Zimmermannová O, et al. (2019) Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochim Biophys Acta Mol Cell Res 1866(9):1376-1388 PMID:31136755
    • SGD Paper
    • DOI full text
    • PubMed
  • Šoltésová M, et al. (2019) Nuclear magnetic resonance investigation of water transport through the plasma membrane of various yeast species. FEMS Microbiol Lett 366(18) PMID:31778539
    • SGD Paper
    • DOI full text
    • PubMed
  • Herkommerová K, et al. (2018) Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S. cerevisiae. Biotechnol Lett 40(2):405-411 PMID:29189924
    • SGD Paper
    • DOI full text
    • PubMed
  • Zemančíková J, et al. (2018) Four Saccharomyces species differ in their tolerance to various stresses though they have similar basic physiological parameters. Folia Microbiol (Praha) 63(2):217-227 PMID:29052811
    • SGD Paper
    • DOI full text
    • PubMed
  • Rosas-Santiago P, et al. (2017) Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos. Biochim Biophys Acta Mol Cell Res 1864(10):1809-1818 PMID:28723420
    • SGD Paper
    • DOI full text
    • PubMed
  • Antošová Z and Sychrová H (2016) Yeast Hosts for the Production of Recombinant Laccases: A Review. Mol Biotechnol 58(2):93-116 PMID:26698313
    • SGD Paper
    • DOI full text
    • PubMed
  • Kschischo M, et al. (2016) Membrane Transport in Yeast, An Introduction. Adv Exp Med Biol 892:1-10 PMID:26721268
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Torrado R, et al. (2016) Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress. Front Microbiol 7:435 PMID:27064588
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ramos J, et al. (2016) Yeast Membrane Transport. Preface. Adv Exp Med Biol 892:v PMID:27110620
    • SGD Paper
    • PubMed
  • Rosas-Santiago P, et al. (2016) Erv14 cargo receptor participates in yeast salt tolerance via its interaction with the plasma-membrane Nha1 cation/proton antiporter. Biochim Biophys Acta 1858(1):67-74 PMID:26440927
    • SGD Paper
    • DOI full text
    • PubMed
  • Kodedová M and Sychrová H (2015) Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae. PLoS One 10(9):e0139306 PMID:26418026
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosas-Santiago P, et al. (2015) Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. J Exp Bot 66(9):2733-48 PMID:25750424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ariño J, et al. (2014) Systems biology of monovalent cation homeostasis in yeast: the translucent contribution. Adv Microb Physiol 64:1-63 PMID:24797924
    • SGD Paper
    • DOI full text
    • PubMed
  • Bubnová M, et al. (2014) Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses. Yeast 31(8):309-21 PMID:24962688
    • SGD Paper
    • DOI full text
    • PubMed
  • Buček A, et al. (2014) Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS One 9(3):e93322 PMID:24681902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Herrera R, et al. (2014) Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochim Biophys Acta 1838(1 Pt B):127-33 PMID:24021239
    • SGD Paper
    • DOI full text
    • PubMed
  • Hapala I, et al. (2013) Yeast membranes and cell wall: from basics to applications. Curr Genet 59(4):167-9 PMID:24057126
    • SGD Paper
    • DOI full text
    • PubMed
  • Vinterová Z, et al. (2013) Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition. J Microbiol 51(3):336-44 PMID:23812814
    • SGD Paper
    • DOI full text
    • PubMed
  • Marešová L, et al. (2012) Comparison of the influence of small GTPases Arl1 and Ypt6 on yeast cells' tolerance to various stress factors. FEMS Yeast Res 12(3):332-40 PMID:22188384
    • SGD Paper
    • DOI full text
    • PubMed
  • Stříbný J, et al. (2012) Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae. Curr Genet 58(5-6):255-64 PMID:22948499
    • SGD Paper
    • DOI full text
    • PubMed
  • Zahrádka J and Sychrová H (2012) Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions. FEMS Yeast Res 12(4):439-46 PMID:22329368
    • SGD Paper
    • DOI full text
    • PubMed
  • Zahrádka J, et al. (2012) Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochim Biophys Acta 1820(7):849-58 PMID:22484491
    • SGD Paper
    • DOI full text
    • PubMed
  • Barreto L, et al. (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell 10(9):1241-50 PMID:21724935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kraidlova L, et al. (2011) The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. Eukaryot Cell 10(9):1219-29 PMID:21764911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petrezsélyová S, et al. (2011) Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae. Folia Microbiol (Praha) 56(1):23-8 PMID:21424545
    • SGD Paper
    • DOI full text
    • PubMed
  • Ramos J, et al. (2011) Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 317(1):1-8 PMID:21241357
    • SGD Paper
    • DOI full text
    • PubMed
  • Ariño J, et al. (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95-120 PMID:20197501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krauke Y and Sychrová H (2010) Chimeras between C. glabrata Cnh1 and S. cerevisiae Nha1 Na+/H+-antiporters are functional proteins increasing the salt tolerance of yeast cells. Folia Microbiol (Praha) 55(5):435-41 PMID:20941577
    • SGD Paper
    • DOI full text
    • PubMed
  • Maresová L, et al. (2010) New applications of pHluorin--measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 27(6):317-25 PMID:20148390
    • SGD Paper
    • DOI full text
    • PubMed
  • Marešová L and Sychrová H (2010) Genetic interactions among the Arl1 GTPase and intracellular Na(+) /H(+) antiporters in pH homeostasis and cation detoxification. FEMS Yeast Res 10(7):802-11 PMID:20659170
    • SGD Paper
    • DOI full text
    • PubMed
  • Navarrete C, et al. (2010) Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10(5):508-17 PMID:20491939
    • SGD Paper
    • DOI full text
    • PubMed
  • Pribylová L and Sychrová H (2006) Expression of the Saccharomyces cerevisiae MPR1 gene encoding N-acetyltransferase in Zygosaccharomyces rouxii confers resistance to L-azetidine-2-carboxylate. Folia Microbiol (Praha) 51(3):203-7 PMID:17004651
    • SGD Paper
    • DOI full text
    • PubMed
  • Pribylová L, et al. (2006) Exploration of yeast alkali metal cation/H+ antiporters: sequence and structure comparison. Folia Microbiol (Praha) 51(5):413-24 PMID:17176761
    • SGD Paper
    • DOI full text
    • PubMed
  • Kinclová-Zimmermannová O, et al. (2004) Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters. Folia Microbiol (Praha) 49(5):519-25 PMID:15702539
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res 53 Suppl 1:S91-8 PMID:15119939
    • SGD Paper
    • PubMed
  • Kinclová O, et al. (2002) Difference in substrate specificity divides the yeast alkali-metal-cation/H(+) antiporters into two subfamilies. Microbiology (Reading) 148(Pt 4):1225-1232 PMID:11932466
    • SGD Paper
    • DOI full text
    • PubMed
  • Kinclová O, et al. (2001) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40(3):656-68 PMID:11359571
    • SGD Paper
    • DOI full text
    • PubMed
  • Kinclová O, et al. (2001) The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG1 and the SOD2 genes. J Biotechnol 88(2):151-8 PMID:11403849
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H (2001) Molecular cloning and sequence analysis of the Zygosaccharomyces rouxiiLEU2 gene encoding a beta-isopropylmalate dehydrogenase. Yeast 18(10):989-94 PMID:11447605
    • SGD Paper
    • DOI full text
    • PubMed
  • Matĕjcková-Forejtová A, et al. (1999) Degradation of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEMS Microbiol Lett 176(1):257-62 PMID:10418152
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H, et al. (1999) Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171(2):167-72 PMID:10077841
    • SGD Paper
    • DOI full text
    • PubMed
  • BaAueIos MA, et al. (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology (Reading) 144 ( Pt 10):2749-2758 PMID:9802016
    • SGD Paper
    • DOI full text
    • PubMed
  • Matìjèková A and Sychrová H (1997) Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Lett 408(1):89-93 PMID:9180275
    • SGD Paper
    • DOI full text
    • PubMed
  • Matĕjcková A and Sychrová H (1997) Biogenesis of a heterologous amino acid permease expressed in saccharomyces cerevisiae. Folia Microbiol (Praha) 42(3):243-4 PMID:9378421
    • SGD Paper
    • DOI full text
    • PubMed
  • Matĕjcková A and Sychrová H (1996) Properties of Candida albicans CAN1 permease expressed in Saccharomyces cerevisiae. Folia Microbiol (Praha) 41(1):107-9 PMID:9090844
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H and Souciet JL (1994) CAN1, a gene encoding a permease for basic amino acids in Candida albicans. Yeast 10(12):1647-51 PMID:7725800
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H, et al. (1994) Candida albicans gene CAN1 is highly homologous to other yeast and E. coli genes coding for amino acid permeases. Folia Microbiol (Praha) 39(6):547-51 PMID:8550019
    • SGD Paper
    • DOI full text
    • PubMed
  • Sychrová H, et al. (1993) Kinetic properties of yeast lysine permeases coded by genes on multi-copy vectors. FEMS Microbiol Lett 113(1):57-61 PMID:8243983
    • SGD Paper
    • DOI full text
    • PubMed
  • Horák J, et al. (1990) Phenylmethylsulfonyl fluoride protects L-lysine transport in Schizosaccharomyces pombe against inactivation by ammonium ions. Biochim Biophys Acta 1023(3):380-2 PMID:2110481
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top