Kanai M, et al. (2025) Efficient genes identification via quantitative trait loci analysis by crossbreeding of sake and laboratory yeast. Appl Microbiol Biotechnol 109(1):84 PMID:40198396
Shimoi H, et al. (2020) Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast. J Biosci Bioeng 130(4):367-373 PMID:32646632
Watanabe D, et al. (2019) Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Appl Environ Microbiol 85(1) PMID:30341081
Kanai M, et al. (2017) Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains. J Biosci Bioeng 123(1):8-14 PMID:27567046
Goshima T, et al. (2016) Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801. Biosci Biotechnol Biochem 80(8):1657-62 PMID:27191586
Watanabe D, et al. (2016) Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 82(1):340-51 PMID:26497456
Hirayama S, et al. (2015) Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11. J Biosci Bioeng 119(5):532-7 PMID:25454063
Tamura H, et al. (2015) Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity. Biosci Biotechnol Biochem 79(7):1191-9 PMID:25787154
Uehara K, et al. (2015) Screening of high-level 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone-producing strains from a collection of gene deletion mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 81(1):453-60 PMID:25362059
Inaba T, et al. (2013) An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3(1):74 PMID:24373204
Jayakody LN, et al. (2013) Identification of the sulphate ion as one of the key components of yeast spoilage of a sports drink through genome-wide expression analysis. J Gen Appl Microbiol 59(3):227-38 PMID:23863293
Watanabe D, et al. (2013) Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 77(11):2255-62 PMID:24200791
Noguchi C, et al. (2012) Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 78(2):385-92 PMID:22057870
Sasano Y, et al. (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113(4):451-5 PMID:22178024
Watanabe D, et al. (2012) A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 78(11):4008-16 PMID:22447585
Urbanczyk H, et al. (2011) Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. J Biosci Bioeng 112(1):44-8 PMID:21459038
Watanabe D, et al. (2011) Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system. J Biosci Bioeng 112(1):54-7 PMID:21470907
Watanabe D, et al. (2011) Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. J Biosci Bioeng 112(6):577-82 PMID:21906996
Watanabe D, et al. (2011) Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p. Appl Environ Microbiol 77(3):934-41 PMID:21131516
Araki Y, et al. (2009) Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae. J Biosci Bioeng 107(1):1-6 PMID:19147100
Watanabe M, et al. (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107(5):516-8 PMID:19393550
Wu H, et al. (2009) Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing. J Biosci Bioeng 107(6):636-40 PMID:19447341
Ogihara F, et al. (2008) Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes. Yeast 25(6):419-32 PMID:18509847
Kitagaki H, et al. (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581(16):2935-42 PMID:17544409
Watanabe M, et al. (2007) Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 104(3):163-70 PMID:17964478
Haitani Y, et al. (2006) Rsp5 regulates expression of stress proteins via post-translational modification of Hsf1 and Msn4 in Saccharomyces cerevisiae. FEBS Lett 580(14):3433-8 PMID:16713599
Shimizu M, et al. (2005) Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains. J Biosci Bioeng 100(6):678-80 PMID:16473780
Tomishige N, et al. (2005) SKG1, a suppressor gene of synthetic lethality of kex2Deltagas1Delta mutations, encodes a novel membrane protein that affects cell wall composition. Yeast 22(2):141-55 PMID:15645486
Wu H, et al. (2005) Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae. Appl Environ Microbiol 71(11):6845-55 PMID:16269718
Kitagaki H, et al. (2004) A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot Cell 3(5):1297-306 PMID:15470258
Kubota S, et al. (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68(4):968-72 PMID:15118337
Tamura K, et al. (2004) A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J Biosci Bioeng 98(3):159-66 PMID:16233684
Tomishige N, et al. (2003) Mutations that are synthetically lethal with a gas1Delta allele cause defects in the cell wall of Saccharomyces cerevisiae. Mol Genet Genomics 269(4):562-73 PMID:12827498
Yano S, et al. (2003) Characterization of an alpha-ketoglutarate-resistant sake yeast mutant with high organic acid productivity. J Biosci Bioeng 96(4):332-6 PMID:16233532
Kitagaki H, et al. (2002) Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46(4):1011-22 PMID:12421307
Shimoi H, et al. (2002) The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast. Appl Environ Microbiol 68(4):2018-25 PMID:11916725
Wu H, et al. (2002) Purification and characterization of beta-1,6-glucanase of Streptomyces rochei application in the study of yeast cell wall proteins. Biosci Biotechnol Biochem 66(11):2515-9 PMID:12507000
Takahashi T, et al. (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265(6):1112-9 PMID:11523784
Kambe-Honjoh H, et al. (2000) Molecular breeding of yeast with higher metal-adsorption capacity by expression of histidine-repeat insertion in the protein anchored to the cell wall. J Gen Appl Microbiol 46(3):113-117 PMID:12483584
Fujii T, et al. (1999) Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim Biophys Acta 1427(2):133-44 PMID:10216230
Iwashita K, et al. (1999) The bglA gene of Aspergillus kawachii encodes both extracellular and cell wall-bound beta-glucosidases. Appl Environ Microbiol 65(12):5546-53 PMID:10584016
Shimoi H, et al. (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381-7 PMID:9642191
Kitagaki H, et al. (1997) Identification and analysis of a static culture-specific cell wall protein, Tir1p/Srp1p in Saccharomyces cerevisiae. Eur J Biochem 249(1):343-9 PMID:9363789
Kapteyn JC, et al. (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6(3):337-45 PMID:8724141
Shimoi H, et al. (1995) Molecular cloning of CWP1: a gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabidus protease I. J Biochem 118(2):302-11 PMID:8543563