AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Qiu H
  • References

Author: Qiu H


References 48 references


No citations for this author.

Download References (.nbib)

  • Qiu H and Ye C (2025) Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism. Biol Cell 117(3):e70002 PMID:40123381
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2025) An adaptive organelle triad houses lipid droplets for dynamic regulation. Cell Rep 44(6):115813 PMID:40504686
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu Y, et al. (2025) Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 21(1):35-46 PMID:39060393
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang C, et al. (2024) De novo production of bioactive sesterterpenoid ophiobolins in Saccharomyces cerevisiae cell factories. Microb Cell Fact 23(1):129 PMID:38711040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fang W, et al. (2023) Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat Commun 14(1):2504 PMID:37130856
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vijjamarri AK, et al. (2023) Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. bioRxiv PMID:36711592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang M, et al. (2023) Single-molecule study reveals Hmo1, not Hho1, promotes chromatin assembly in budding yeast. mBio 14(4):e0099323 PMID:37432033
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng Q, et al. (2023) Differential requirements for Gcn5 and NuA4 HAT activities in the starvation-induced versus basal transcriptomes. Nucleic Acids Res 51(8):3696-3721 PMID:36864781
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2022) Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly. PLoS Genet 18(7):e1010277 PMID:35793348
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2021) Correction: Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res 49(1):599 PMID:33290553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu H, et al. (2021) Contribution of pristine and reduced microbial extracellular polymeric substances of different sources to Cu(II) reduction. J Hazard Mater 415:125616 PMID:33735768
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2020) Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res 48(15):8408-8430 PMID:32663283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2018) Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 70(2):297-311.e4 PMID:29628310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2018) SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 32(9-10):695-710 PMID:29785963
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen F, et al. (2017) Selenium-enriched Saccharomyces cerevisiae improves growth, antioxidant status and selenoprotein gene expression in Arbor Acres broilers. J Anim Physiol Anim Nutr (Berl) 101(2):259-266 PMID:27868237
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2016) Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 26(2):211-25 PMID:26602697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rawal Y, et al. (2014) Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by accelerating degradation of Gcn4 via Pho85 and Cdk8. PLoS Genet 10(7):e1004534 PMID:25079372
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaur NA, et al. (2013) Vps factors are required for efficient transcription elongation in budding yeast. Genetics 193(3):829-51 PMID:23335340
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2012) Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J 31(16):3494-505 PMID:22796944
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cherkasova V, et al. (2010) Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol Cell Biol 30(12):2862-73 PMID:20404097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dev K, et al. (2010) The beta/Gcd7 subunit of eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor, is crucial for binding eIF2 in vivo. Mol Cell Biol 30(21):5218-33 PMID:20805354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Govind CK, et al. (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39(2):234-46 PMID:20670892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jedidi I, et al. (2010) Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem 285(4):2438-55 PMID:19940160
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong CM, et al. (2010) Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Res 38(7):2217-28 PMID:20053728
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gárriz A, et al. (2009) A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Mol Cell Biol 29(6):1592-607 PMID:19114556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33(6):752-62 PMID:19328068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2008) Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 28(11):3686-99 PMID:18378690
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang F, et al. (2008) Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4. Mol Cell Biol 28(22):6796-818 PMID:18794364
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Govind CK, et al. (2007) Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 25(1):31-42 PMID:17218269
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H and Wang Y (2007) Probing adenosine nucleotide-binding proteins with an affinity-labeled nucleotide probe and mass spectrometry. Anal Chem 79(15):5547-56 PMID:17602667
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong CM, et al. (2007) Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 27(18):6520-31 PMID:17636014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (2006) The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol Cell Biol 26(8):3135-48 PMID:16581788
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Govind CK, et al. (2005) Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol Cell Biol 25(13):5626-38 PMID:15964818
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim SJ, et al. (2005) Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 25(24):11171-83 PMID:16314536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Padyana AK, et al. (2005) Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J Biol Chem 280(32):29289-99 PMID:15964839
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2005) Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol Cell Biol 25(9):3461-74 PMID:15831453
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dong J, et al. (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 279(40):42157-68 PMID:15277527
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2004) An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol Cell Biol 24(10):4104-17 PMID:15121833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoon S, et al. (2004) Recruitment of the ArgR/Mcm1p repressor is stimulated by the activator Gcn4p: a self-checking activation mechanism. Proc Natl Acad Sci U S A 101(32):11713-8 PMID:15289616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swanson MJ, et al. (2003) A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol Cell Biol 23(8):2800-20 PMID:12665580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoon S, et al. (2003) Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA. Mol Cell Biol 23(23):8829-45 PMID:14612422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dong J, et al. (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6(2):269-79 PMID:10983975
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (2000) Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 20(7):2505-16 PMID:10713174
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (1998) Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain. Mol Cell Biol 18(5):2697-711 PMID:9566889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marton MJ, et al. (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Mol Cell Biol 17(8):4474-89 PMID:9234705
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzder SN, et al. (1994) DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature 367(6458):91-4 PMID:8107780
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu H, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev 7(11):2161-71 PMID:7693549
    • SGD Paper
    • DOI full text
    • PubMed
  • Guan KL, et al. (1991) Cloning and expression of a yeast protein tyrosine phosphatase. J Biol Chem 266(20):12964-70 PMID:1649172
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top