AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ptashne M
  • References

Author: Ptashne M


References 65 references


No citations for this author.

Download References (.nbib)

  • Wang X, et al. (2015) Nucleosome avidities and transcriptional silencing in yeast. Curr Biol 25(9):1215-20 PMID:25891403
    • SGD Paper
    • DOI full text
    • PubMed
  • Ptashne M (2014) The chemistry of regulation of genes and other things. J Biol Chem 289(9):5417-35 PMID:24385432
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2011) Nucleosomes and the accessibility problem. Trends Genet 27(12):487-92 PMID:22019336
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang X, et al. (2011) An effect of DNA sequence on nucleosome occupancy and removal. Nat Struct Mol Biol 18(4):507-9 PMID:21378966
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Floer M, et al. (2010) A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141(3):407-18 PMID:20434983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2010) Proteolytic instability and the action of nonclassical transcriptional activators. Curr Biol 20(9):868-71 PMID:20417106
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bryant GO, et al. (2008) Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol 6(12):2928-39 PMID:19108605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Floer M, et al. (2008) HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proc Natl Acad Sci U S A 105(8):2975-80 PMID:18287040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ptashne M (2008) Transcription: a mechanism for short-term memory. Curr Biol 18(1):R25-7 PMID:18177708
    • SGD Paper
    • DOI full text
    • PubMed
  • Ansari AZ, et al. (2005) Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proc Natl Acad Sci U S A 102(7):2346-9 PMID:15687503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bourbon HM, et al. (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14(5):553-7 PMID:15175151
    • SGD Paper
    • DOI full text
    • PubMed
  • Cheng JX, et al. (2004) Activation of the Gal1 gene of yeast by pairs of 'non-classical' activators. Curr Biol 14(18):1675-9 PMID:15380071
    • SGD Paper
    • DOI full text
    • PubMed
  • Bryant GO and Ptashne M (2003) Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 11(5):1301-9 PMID:12769853
    • SGD Paper
    • DOI full text
    • PubMed
  • Ptashne M and Gann A (2003) Signal transduction. Imposing specificity on kinases. Science 299(5609):1025-7 PMID:12586931
    • SGD Paper
    • DOI full text
    • PubMed
  • Ansari AZ, et al. (2002) Transcriptional activating regions target a cyclin-dependent kinase. Proc Natl Acad Sci U S A 99(23):14706-9 PMID:12417740
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng JX, et al. (2002) The TBP-inhibitory domain of TAF145 limits the effects of nonclassical transcriptional activators. Curr Biol 12(11):934-7 PMID:12062059
    • SGD Paper
    • DOI full text
    • PubMed
  • Cheng JX, et al. (2002) Responses of four yeast genes to changes in the transcriptional machinery are determined by their promoters. Curr Biol 12(21):1828-32 PMID:12419182
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu Z, et al. (2002) A target essential for the activity of a nonacidic yeast transcriptional activator. Proc Natl Acad Sci U S A 99(13):8591-6 PMID:12084920
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zaman Z, et al. (2002) Telomere looping permits repression "at a distance" in yeast. Curr Biol 12(11):930-3 PMID:12062058
    • SGD Paper
    • DOI full text
    • PubMed
  • Hidalgo P, et al. (2001) Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 15(8):1007-20 PMID:11316794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zaman Z, et al. (2001) Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc Natl Acad Sci U S A 98(5):2550-4 PMID:11226276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Bruin D, et al. (2001) Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409(6816):109-13 PMID:11343124
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu X, et al. (2000) An artificial transcriptional activating region with unusual properties. Proc Natl Acad Sci U S A 97(5):1988-92 PMID:10681438
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaudreau L, et al. (1999) Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences. Proc Natl Acad Sci U S A 96(6):2668-73 PMID:10077568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ansari AZ, et al. (1998) A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci U S A 95(23):13543-8 PMID:9811836
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaudreau L, et al. (1998) Activation of transcription in vitro by recruitment of the yeast RNA polymerase II holoenzyme. Mol Cell 1(6):913-6 PMID:9660974
    • SGD Paper
    • DOI full text
    • PubMed
  • Koh SS, et al. (1998) An activator target in the RNA polymerase II holoenzyme. Mol Cell 1(6):895-904 PMID:9660972
    • SGD Paper
    • DOI full text
    • PubMed
  • Gaudreau L, et al. (1997) RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 89(1):55-62 PMID:9094714
    • SGD Paper
    • DOI full text
    • PubMed
  • Walters KJ, et al. (1997) Structure and mobility of the PUT3 dimer. Nat Struct Biol 4(9):744-50 PMID:9303003
    • SGD Paper
    • DOI full text
    • PubMed
  • Farrell S, et al. (1996) Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev 10(18):2359-67 PMID:8824594
    • SGD Paper
    • DOI full text
    • PubMed
  • Liang SD, et al. (1996) DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA. Mol Cell Biol 16(7):3773-80 PMID:8668194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu Y, et al. (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15(15):3951-63 PMID:8670900
    • SGD Paper
    • PMC full text
    • PubMed
  • Barberis A, et al. (1995) Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81(3):359-68 PMID:7736588
    • SGD Paper
    • DOI full text
    • PubMed
  • Reece RJ and Ptashne M (1993) Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261(5123):909-11 PMID:8346441
    • SGD Paper
    • DOI full text
    • PubMed
  • Lamphier MS and Ptashne M (1992) Multiple mechanisms mediate glucose repression of the yeast GAL1 gene. Proc Natl Acad Sci U S A 89(13):5922-6 PMID:1631075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marmorstein R, et al. (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356(6368):408-14 PMID:1557122
    • SGD Paper
    • DOI full text
    • PubMed
  • Sadowski I, et al. (1991) GAL4 is phosphorylated as a consequence of transcriptional activation. Proc Natl Acad Sci U S A 88(23):10510-4 PMID:1961715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carey M, et al. (1990) A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345(6273):361-4 PMID:2160609
    • SGD Paper
    • DOI full text
    • PubMed
  • Carey M, et al. (1990) A potent GAL4 derivative activates transcription at a distance in vitro. Science 247(4943):710-2 PMID:2405489
    • SGD Paper
    • DOI full text
    • PubMed
  • Gill G, et al. (1990) Mutations that increase the activity of a transcriptional activator in yeast and mammalian cells. Proc Natl Acad Sci U S A 87(6):2127-31 PMID:2179950
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Himmelfarb HJ, et al. (1990) GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63(6):1299-309 PMID:2124519
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin YS, et al. (1990) How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345(6273):359-61 PMID:2188137
    • SGD Paper
    • DOI full text
    • PubMed
  • Carey M, et al. (1989) An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol 209(3):423-32 PMID:2511324
    • SGD Paper
    • DOI full text
    • PubMed
  • Chasman DI, et al. (1989) Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Mol Cell Biol 9(11):4746-9 PMID:2557540
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fischer JA, et al. (1988) GAL4 activates transcription in Drosophila. Nature 332(6167):853-6 PMID:3128741
    • SGD Paper
    • DOI full text
    • PubMed
  • Gill G and Ptashne M (1988) Negative effect of the transcriptional activator GAL4. Nature 334(6184):721-4 PMID:3412449
    • SGD Paper
    • DOI full text
    • PubMed
  • Giniger E and Ptashne M (1988) Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad Sci U S A 85(2):382-6 PMID:3124106
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kakidani H and Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52(2):161-7 PMID:2830021
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin YS, et al. (1988) GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54(5):659-64 PMID:3044607
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma J, et al. (1988) Yeast activators stimulate plant gene expression. Nature 334(6183):631-3 PMID:3165494
    • SGD Paper
    • DOI full text
    • PubMed
  • Ruden DM, et al. (1988) No strict alignment is required between a transcriptional activator binding site and the "TATA box" of a yeast gene. Proc Natl Acad Sci U S A 85(12):4262-6 PMID:3132708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sadowski I, et al. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335(6190):563-4 PMID:3047590
    • SGD Paper
    • DOI full text
    • PubMed
  • Gill G and Ptashne M (1987) Mutants of GAL4 protein altered in an activation function. Cell 51(1):121-6 PMID:3115592
    • SGD Paper
    • DOI full text
    • PubMed
  • Giniger E and Ptashne M (1987) Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 330(6149):670-2 PMID:3317067
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma J and Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48(5):847-53 PMID:3028647
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma J and Ptashne M (1987) A new class of yeast transcriptional activators. Cell 51(1):113-9 PMID:3115591
    • SGD Paper
    • DOI full text
    • PubMed
  • Ma J and Ptashne M (1987) The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50(1):137-42 PMID:3297349
    • SGD Paper
    • DOI full text
    • PubMed
  • Keegan L, et al. (1986) Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231(4739):699-704 PMID:3080805
    • SGD Paper
    • DOI full text
    • PubMed
  • Silver PA, et al. (1986) DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae. Mol Cell Biol 6(12):4763-6 PMID:3099172
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brent R and Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43(3 Pt 2):729-36 PMID:3907859
    • SGD Paper
    • DOI full text
    • PubMed
  • Giniger E, et al. (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40(4):767-74 PMID:3886158
    • SGD Paper
    • DOI full text
    • PubMed
  • Silver PA, et al. (1984) Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc Natl Acad Sci U S A 81(19):5951-5 PMID:6091123
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • West RW, et al. (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol Cell Biol 4(11):2467-78 PMID:6392852
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yocum RR, et al. (1984) Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4(10):1985-98 PMID:6390181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guarente L and Ptashne M (1981) Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78(4):2199-203 PMID:6264467
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top