AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Prakash L
  • References

Author: Prakash L


References 206 references


No citations for this author.

Download References (.nbib)

  • Malik R, et al. (2024) Cryo-EM structure of the Rev1-Polζ holocomplex reveals the mechanism of their cooperativity in translesion DNA synthesis. Nat Struct Mol Biol 31(9):1394-1403 PMID:38720088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2023) Yeast 9-1-1 complex acts as a sliding clamp for DNA synthesis by DNA polymerase ε. J Biol Chem 299(1):102727 PMID:36410434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2023) DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity. J Biol Chem 299(7):104913 PMID:37307920
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klassen R, et al. (2023) Mismatch repair operates at the replication fork in direct competition with mismatch extension by DNA polymerase δ. J Biol Chem 299(4):104598 PMID:36898578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malik R, et al. (2022) Cryo-EM structure of translesion DNA synthesis polymerase ζ with a base pair mismatch. Nat Commun 13(1):1050 PMID:35217661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malik R, et al. (2020) Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nat Struct Mol Biol 27(10):913-924 PMID:32807989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain R, et al. (2019) Cryo-EM structure and dynamics of eukaryotic DNA polymerase δ holoenzyme. Nat Struct Mol Biol 26(10):955-962 PMID:31582849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2016) Response to Burgers et al. Mol Cell 61(4):494-495 PMID:26895422
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (2015) A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 59(2):163-175 PMID:26145172
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoon JH, et al. (2015) Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ. Genes Dev 29(24):2588-602 PMID:26680302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain R, et al. (2014) Crystal structure of yeast DNA polymerase ε catalytic domain. PLoS One 9(4):e94835 PMID:24733111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain R, et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ε. J Mol Biol 426(2):301-8 PMID:24144619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez-Llorente Y, et al. (2013) The architecture of yeast DNA polymerase ζ. Cell Rep 5(1):79-86 PMID:24120860
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2012) Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. Proc Natl Acad Sci U S A 109(31):12455-60 PMID:22711820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoon JH, et al. (2012) Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells. Proc Natl Acad Sci U S A 109(20):7799-804 PMID:22547805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2011) PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc Natl Acad Sci U S A 108(44):17927-32 PMID:22003126
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ai Y, et al. (2011) A novel ubiquitin binding mode in the S. cerevisiae translesion synthesis DNA polymerase η. Mol Biosyst 7(6):1874-82 PMID:21483899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gangavarapu V, et al. (2011) Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast. mBio 2(3):e00079-11 PMID:21586645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair DT, et al. (2011) DNA synthesis across an abasic lesion by yeast REV1 DNA polymerase. J Mol Biol 406(1):18-28 PMID:21167175
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Silverstein TD, et al. (2010) Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Structure 18(11):1463-70 PMID:21070945
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Silverstein TD, et al. (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465(7301):1039-43 PMID:20577207
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci U S A 106(24):9631-6 PMID:19487673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jain R, et al. (2009) Structural insights into yeast DNA polymerase delta by small angle X-ray scattering. J Mol Biol 394(3):377-82 PMID:19818796
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pagès V, et al. (2009) Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes Dev 23(12):1438-49 PMID:19528320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swan MK, et al. (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16(9):979-86 PMID:19718023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Swan MK, et al. (2009) Structure of the human Rev1-DNA-dNTP ternary complex. J Mol Biol 390(4):699-709 PMID:19464298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2008) Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A 105(46):17724-9 PMID:19001268
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair DT, et al. (2008) Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase. Structure 16(2):239-45 PMID:18275815
    • SGD Paper
    • DOI full text
    • PubMed
  • Pagès V, et al. (2008) Mutational specificity and genetic control of replicative bypass of an abasic site in yeast. Proc Natl Acad Sci U S A 105(4):1170-5 PMID:18202176
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pagès V, et al. (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180(1):73-82 PMID:18757916
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unk I, et al. (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci U S A 105(10):3768-73 PMID:18316726
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhuang Z, et al. (2008) Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci U S A 105(14):5361-6 PMID:18385374
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2007) Complex formation of yeast Rev1 with DNA polymerase eta. Mol Cell Biol 27(23):8401-8 PMID:17875922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2007) Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Mol Cell Biol 27(20):7266-72 PMID:17709386
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blastyák A, et al. (2007) Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28(1):167-75 PMID:17936713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gangavarapu V, et al. (2007) Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 27(21):7758-64 PMID:17785441
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2007) A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Mol Cell Biol 27(20):7198-205 PMID:17698580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ribar B, et al. (2007) ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol Cell Biol 27(8):3211-6 PMID:17296727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Santa Maria SR, et al. (2007) Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 27(23):8409-18 PMID:17923688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26(24):9555-63 PMID:17030609
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gangavarapu V, et al. (2006) Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26(20):7783-90 PMID:16908531
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzder SN, et al. (2006) Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 26(3):1135-41 PMID:16428464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2006) Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 103(17):6477-82 PMID:16611731
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ribar B, et al. (2006) Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 26(11):3999-4005 PMID:16705154
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unk I, et al. (2006) Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 103(48):18107-12 PMID:17108083
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Acharya N, et al. (2005) Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 25(21):9734-40 PMID:16227619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2005) Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity. Mol Cell Biol 25(22):10183-9 PMID:16260630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair DT, et al. (2005) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309(5744):2219-22 PMID:16195463
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash S, et al. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317-53 PMID:15952890
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (2004) Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species. Genes Dev 18(18):2283-91 PMID:15371342
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24(10):4267-74 PMID:15121847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2004) Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Mol Cell Biol 24(16):6900-6 PMID:15282292
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2003) Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol 23(4):1453-9 PMID:12556503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2003) Deoxynucleotide triphosphate binding mode conserved in Y family DNA polymerases. Mol Cell Biol 23(8):3008-12 PMID:12665597
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2003) Yeast DNA polymerase zeta (zeta) is essential for error-free replication past thymine glycol. Genes Dev 17(1):77-87 PMID:12514101
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Minko IG, et al. (2003) Translesion synthesis past acrolein-derived DNA adduct, gamma -hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 278(2):784-90 PMID:12401796
    • SGD Paper
    • DOI full text
    • PubMed
  • Washington MT, et al. (2003) Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta. Mol Cell Biol 23(14):5107-12 PMID:12832493
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2003) The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme. Mol Cell Biol 23(22):8316-22 PMID:14585988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2003) Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase eta. Proc Natl Acad Sci U S A 100(21):12093-8 PMID:14527996
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2003) Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proc Natl Acad Sci U S A 100(9):5113-8 PMID:12692307
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu SL, et al. (2003) The stalling of transcription at abasic sites is highly mutagenic. Mol Cell Biol 23(1):382-8 PMID:12482989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2002) Yeast Rev1 protein is a G template-specific DNA polymerase. J Biol Chem 277(18):15546-51 PMID:11850424
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee SK, et al. (2002) Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Cell 109(7):823-34 PMID:12110180
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee SK, et al. (2002) Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol 22(12):4383-9 PMID:12024048
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash S and Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16(15):1872-83 PMID:12154119
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres-Ramos CA, et al. (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22(7):2419-26 PMID:11884624
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unk I, et al. (2002) Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen. Mol Cell Biol 22(18):6480-6 PMID:12192046
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burgers PM, et al. (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276(47):43487-90 PMID:11579108
    • SGD Paper
    • DOI full text
    • PubMed
  • Haracska L, et al. (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15(8):945-54 PMID:11316789
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2001) Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell 8(2):407-15 PMID:11545742
    • SGD Paper
    • DOI full text
    • PubMed
  • Haracska L, et al. (2001) Inefficient bypass of an abasic site by DNA polymerase eta. J Biol Chem 276(9):6861-6 PMID:11106652
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (2001) Role of DNA polymerase eta in the bypass of a (6-4) TT photoproduct. Mol Cell Biol 21(10):3558-63 PMID:11313481
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kondratick CM, et al. (2001) Acidic residues critical for the activity and biological function of yeast DNA polymerase eta. Mol Cell Biol 21(6):2018-25 PMID:11238937
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SK, et al. (2001) Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol Cell Biol 21(24):8651-6 PMID:11713297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Madril AC, et al. (2001) Fidelity and damage bypass ability of Schizosaccharomyces pombe Eso1 protein, comprised of DNA polymerase eta and sister chromatid cohesion protein Ctf7. J Biol Chem 276(46):42857-62 PMID:11551952
    • SGD Paper
    • DOI full text
    • PubMed
  • Minko IG, et al. (2001) Translesion DNA synthesis by yeast DNA polymerase eta on templates containing N2-guanine adducts of 1,3-butadiene metabolites. J Biol Chem 276(4):2517-22 PMID:11062246
    • SGD Paper
    • DOI full text
    • PubMed
  • Trincao J, et al. (2001) Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol Cell 8(2):417-26 PMID:11545743
    • SGD Paper
    • DOI full text
    • PubMed
  • Unk I, et al. (2001) 3'-phosphodiesterase and 3'-->5' exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol Cell Biol 21(5):1656-61 PMID:11238902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2001) Yeast DNA polymerase eta utilizes an induced-fit mechanism of nucleotide incorporation. Cell 107(7):917-27 PMID:11779467
    • SGD Paper
    • DOI full text
    • PubMed
  • Washington MT, et al. (2001) Accuracy of lesion bypass by yeast and human DNA polymerase eta. Proc Natl Acad Sci U S A 98(15):8355-60 PMID:11459975
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Washington MT, et al. (2001) Mismatch extension ability of yeast and human DNA polymerase eta. J Biol Chem 276(3):2263-6 PMID:11054429
    • SGD Paper
    • DOI full text
    • PubMed
  • Yu SL, et al. (2001) Requirement of DNA polymerase eta for error-free bypass of UV-induced CC and TC photoproducts. Mol Cell Biol 21(1):185-8 PMID:11113193
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2000) Replication past O(6)-methylguanine by yeast and human DNA polymerase eta. Mol Cell Biol 20(21):8001-7 PMID:11027270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haracska L, et al. (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 25(4):458-61 PMID:10932195
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (2000) The human DINB1 gene encodes the DNA polymerase Poltheta. Proc Natl Acad Sci U S A 97(8):3838-43 PMID:10760255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (2000) Fidelity of human DNA polymerase eta. J Biol Chem 275(11):7447-50 PMID:10713043
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (2000) Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406(6799):1015-9 PMID:10984059
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash S and Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451(1-2):13-24 PMID:10915862
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash S, et al. (2000) Role of yeast and human DNA polymerase eta in error-free replication of damaged DNA. Cold Spring Harb Symp Quant Biol 65:51-9 PMID:12760020
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres-Ramos CA, et al. (2000) Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Mol Cell Biol 20(10):3522-8 PMID:10779341
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unk I, et al. (2000) Apurinic endonuclease activity of yeast Apn2 protein. J Biol Chem 275(29):22427-34 PMID:10806210
    • SGD Paper
    • DOI full text
    • PubMed
  • Washington MT, et al. (2000) Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc Natl Acad Sci U S A 97(7):3094-9 PMID:10725365
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzder SN, et al. (1999) Synergistic interaction between yeast nucleotide excision repair factors NEF2 and NEF4 in the binding of ultraviolet-damaged DNA. J Biol Chem 274(34):24257-62 PMID:10446201
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1999) Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc Natl Acad Sci U S A 96(22):12224-6 PMID:10535901
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285(5425):263-5 PMID:10398605
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1999) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283(5404):1001-4 PMID:9974380
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1999) Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J Biol Chem 274(23):15975-7 PMID:10347143
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee SK, et al. (1999) Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286(5448):2339-42 PMID:10600744
    • SGD Paper
    • DOI full text
    • PubMed
  • Washington MT, et al. (1999) Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta. J Biol Chem 274(52):36835-8 PMID:10601233
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1998) Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273(47):31541-6 PMID:9813069
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1998) The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J Biol Chem 273(11):6292-6 PMID:9497356
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1998) ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J Biol Chem 273(16):9837-41 PMID:9545323
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1998) Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr Genet 34(1):21-9 PMID:9683672
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1998) Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12(19):3137-43 PMID:9765213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Worthylake DK, et al. (1998) Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution. J Biol Chem 273(11):6271-6 PMID:9497353
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1997) Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272(37):23360-5 PMID:9287349
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1997) Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol Cell Biol 17(8):4536-43 PMID:9234711
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzder SN, et al. (1997) Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 272(35):21665-8 PMID:9268290
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1997) Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr Biol 7(10):790-3 PMID:9368761
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang H, et al. (1997) The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6693-9 PMID:9343433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torres-Ramos CA, et al. (1997) Requirement of yeast DNA polymerase delta in post-replicational repair of UV-damaged DNA. J Biol Chem 272(41):25445-8 PMID:9325255
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1996) RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J Biol Chem 271(31):18314-7 PMID:8702468
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 271(15):8903-10 PMID:8621533
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol 6(9):1185-7 PMID:8805366
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1996) Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc Natl Acad Sci U S A 93(20):10718-22 PMID:8855246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271(45):27987-90 PMID:8910404
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1996) Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem 271(13):7285-8 PMID:8631743
    • SGD Paper
    • DOI full text
    • PubMed
  • Lauder S, et al. (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 16(12):6783-93 PMID:8943333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saparbaev M, et al. (1996) Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142(3):727-36 PMID:8849883
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem 271(18):10821-6 PMID:8631896
    • SGD Paper
    • DOI full text
    • PubMed
  • Torres-Ramos CA, et al. (1996) Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A 93(18):9676-81 PMID:8790390
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guzder SN, et al. (1995) Lethality in yeast of trichothiodystrophy (TTD) mutations in the human xeroderma pigmentosum group D gene. Implications for transcriptional defect in TTD. J Biol Chem 270(30):17660-3 PMID:7629061
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1995) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem 270(15):8385-8 PMID:7721729
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1995) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270(22):12973-6 PMID:7768886
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1995) Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J Biol Chem 270(50):30194-8 PMID:8530429
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1995) Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science 269(5221):238-40 PMID:7618086
    • SGD Paper
    • DOI full text
    • PubMed
  • Sommers CH, et al. (1995) Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5'- to 3'-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J Biol Chem 270(9):4193-6 PMID:7876174
    • SGD Paper
    • DOI full text
    • PubMed
  • Yan YX, et al. (1995) Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr Genet 28(1):12-8 PMID:8536308
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8(7):811-20 PMID:7926769
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1994) DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature 367(6458):91-4 PMID:8107780
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1994) RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369(6481):578-81 PMID:8202161
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1994) Holliday junction cleavage by yeast Rad1 protein. Nature 371(6497):531-4 PMID:7935767
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1994) A conserved 5' to 3' exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG. J Biol Chem 269(50):31342-5 PMID:7989298
    • SGD Paper
    • PubMed
  • Johnson RE, et al. (1994) Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase. J Biol Chem 269(45):28259-62 PMID:7961763
    • SGD Paper
    • PubMed
  • Prakash L (1994) The RAD6 gene and protein of Saccharomyces cerevisiae. Ann N Y Acad Sci 726:267-73 PMID:8092682
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1994) Negative superhelicity promotes ATP-dependent binding of yeast RAD3 protein to ultraviolet-damaged DNA. J Biol Chem 269(11):8303-8 PMID:8132553
    • SGD Paper
    • PubMed
  • Guzder SN, et al. (1993) Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A 90(12):5433-7 PMID:8516285
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Habraken Y, et al. (1993) Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366(6453):365-8 PMID:8247134
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash S, et al. (1993) DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet 27:33-70 PMID:8122907
    • SGD Paper
    • DOI full text
    • PubMed
  • Prasad R, et al. (1993) Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. Nucleic Acids Res 21(23):5301-7 PMID:8265341
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu H, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev 7(11):2161-71 PMID:7693549
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1993) Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. J Biol Chem 268(35):26391-9 PMID:8253764
    • SGD Paper
    • PubMed
  • Sung P, et al. (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365(6449):852-5 PMID:8413672
    • SGD Paper
    • DOI full text
    • PubMed
  • Watkins JF, et al. (1993) The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev 7(2):250-61 PMID:8436296
    • SGD Paper
    • DOI full text
    • PubMed
  • Watkins JF, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13(12):7757-65 PMID:8246991
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bailly V, et al. (1992) Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc Natl Acad Sci U S A 89(17):8273-7 PMID:1518857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bankmann M, et al. (1992) Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 355(6360):555-8 PMID:1741034
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson RE, et al. (1992) Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol 12(9):3807-18 PMID:1324406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park E, et al. (1992) RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A 89(23):11416-20 PMID:1333609
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reynolds PR, et al. (1992) The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res 20(9):2327-34 PMID:1534406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1992) Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD10. Nature 355(6362):743-5 PMID:1741062
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1991) DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(21):9712-6 PMID:1719538
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones JS and Prakash L (1991) Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucleic Acids Res 19(4):893-8 PMID:2017370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Koken M, et al. (1991) Dhr6, a Drosophila homolog of the yeast DNA-repair gene RAD6. Proc Natl Acad Sci U S A 88(9):3832-6 PMID:1902572
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Koken MH, et al. (1991) Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci U S A 88(20):8865-9 PMID:1717990
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1991) Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol 221(3):745-9 PMID:1658333
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1991) Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme. EMBO J 10(8):2187-93 PMID:2065660
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones JS, et al. (1990) Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation. Nucleic Acids Res 18(11):3281-5 PMID:2192359
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Madura K, et al. (1990) Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res 18(4):771-8 PMID:2179869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reynolds P, et al. (1990) The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J 9(5):1423-30 PMID:2184030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schiestl RH, et al. (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124(4):817-31 PMID:2182387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1990) Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci U S A 87(7):2695-9 PMID:2157209
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L (1989) The structure and function of RAD6 and RAD18 DNA repair genes of Saccharomyces cerevisiae. Genome 31(2):597-600 PMID:2698834
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L and Prakash S (1989) Excision repair genes of Saccharomyces cerevisiae. Ann Ist Super Sanita 25(1):99-113 PMID:2665606
    • SGD Paper
    • PubMed
  • Schiestl RH, et al. (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9(5):1882-96 PMID:2664461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Duin M, et al. (1989) Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol Cell Biol 9(4):1794-8 PMID:2471070
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones JS, et al. (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16(14B):7119-31 PMID:2970061
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morrison A, et al. (1988) Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol Cell Biol 8(3):1179-85 PMID:3285176
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1988) Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J 7(10):3263-9 PMID:2846277
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1988) The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2(11):1476-85 PMID:2850263
    • SGD Paper
    • DOI full text
    • PubMed
  • Reynolds P, et al. (1987) Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol Cell Biol 7(3):1012-20 PMID:3550428
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1987) The RAD3 gene of Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc Natl Acad Sci U S A 84(17):6045-9 PMID:2957691
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1987) RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A 84(24):8951-5 PMID:2827162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Polakowska R, et al. (1986) Alkylation mutagenesis in Saccharomyces cerevisiae: lack of evidence for an adaptive response. Curr Genet 10(9):647-55 PMID:3329040
    • SGD Paper
    • DOI full text
    • PubMed
  • Peterson TA, et al. (1985) Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol Cell Biol 5(1):226-35 PMID:3885010
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L, et al. (1985) Molecular cloning of the RAD10 gene of Saccharomyces cerevisiae. Gene 34(1):55-61 PMID:3891515
    • SGD Paper
    • DOI full text
    • PubMed
  • Reynolds P, et al. (1985) The nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucleic Acids Res 13(7):2357-72 PMID:2987851
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reynolds P, et al. (1985) RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci U S A 82(1):168-72 PMID:3881753
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reynolds P, et al. (1985) Nucleotide sequence of the RAD10 gene of Saccharomyces cerevisiae. EMBO J 4(13A):3549-52 PMID:3912171
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Higgins DR, et al. (1984) Isolation and characterization of the RAD2 gene of Saccharomyces cerevisiae. Gene 30(1-3):121-8 PMID:6392021
    • SGD Paper
    • DOI full text
    • PubMed
  • Miller RD, et al. (1984) Different effects of RAD genes of Saccharomyces cerevisiae on incisions of interstrand crosslinks and monoadducts in DNA induced by psoralen plus near UV light treatment. Photochem Photobiol 39(3):349-52 PMID:6371851
    • SGD Paper
    • DOI full text
    • PubMed
  • Higgins DR, et al. (1983) Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants. Proc Natl Acad Sci U S A 80(18):5680-4 PMID:16593371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Higgins DR, et al. (1983) Molecular cloning and characterization of the RAD1 gene of Saccharomyces cerevisiae. Gene 26(2-3):119-26 PMID:6368317
    • SGD Paper
    • DOI full text
    • PubMed
  • Miller RD, et al. (1982) Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol Cell Biol 2(8):939-48 PMID:6752694
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller RD, et al. (1982) Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Mol Gen Genet 188(2):235-9 PMID:6759871
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L and Higgins D (1982) Role of DNA repair in ethyl methanesulfonate-induced mutagenesis in Saccharomyces cerevisiae. Carcinogenesis 3(4):439-44 PMID:7046978
    • SGD Paper
    • DOI full text
    • PubMed
  • Crosby B, et al. (1981) Purification and characterization of a uracil-DNA glycosylase from the yeast. Saccharomyces cerevisiae. Nucleic Acids Res 9(21):5797-809 PMID:7031606
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martin P, et al. (1981) a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae. J Bacteriol 146(2):684-91 PMID:7012135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Montelone B, et al. (1981) Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Curr Genet 4:223-232
    • SGD Paper
  • Montelone BA, et al. (1981) Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Curr Genet 4(3):223-32 PMID:24185997
    • SGD Paper
    • DOI full text
    • PubMed
  • Montelone BA, et al. (1981) Spontaneous mitotic recombination in mms8-1, an allele of the CDC9 gene of Saccharomyces cerevisiae. J Bacteriol 147(2):517-25 PMID:7021533
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Montelone BA, et al. (1981) Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: evidence for multiple functions of the RAD6 gene. Mol Gen Genet 184(3):410-5 PMID:7038392
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184(3):471-8 PMID:7038396
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L and Taillon-Miller P (1981) Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Curr Genet 3(3):247-50 PMID:24190138
    • SGD Paper
    • DOI full text
    • PubMed
  • Wilcox DR and Prakash L (1981) Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J Bacteriol 148(2):618-23 PMID:7028721
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash S, et al. (1980) Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics 94(1):31-50 PMID:17248995
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L and Prakash S (1979) Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet 176(3):351-9 PMID:392238
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L, et al. (1979) Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol Gen Genet 172(3):249-58 PMID:45608
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L (1977) Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae. Mol Gen Genet 152(3):125-8 PMID:327268
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L (1977) Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res 45(1):13-20 PMID:335235
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L and Prakash S (1977) Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86(1):33-55 PMID:195865
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash S and Prakash L (1977) Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 87(2):229-36 PMID:200524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L (1976) Effect of Genes Controlling Radiation Sensitivity on Chemically Induced Mutations in SACCHAROMYCES CEREVISIAE. Genetics 83(2):285-301 PMID:17248715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L (1975) The effect of genes controlling radiation sensitivity on chemical mutagenesis in yeast. Basic Life Sci 5A:393-5 PMID:1103850
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash L (1974) Lack of chemically induced mutation in repair-deficient mutants of yeast. Genetics 78(4):1101-18 PMID:4376097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash L and Sherman F (1974) Differentiation between amber and ochre mutants of yeast by reversion with 4-nitroquinoline-1-oxide. Genetics 77(2):245-54 PMID:4603163
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top