Malik R, et al. (2024) Cryo-EM structure of the Rev1-Polζ holocomplex reveals the mechanism of their cooperativity in translesion DNA synthesis. Nat Struct Mol Biol 31(9):1394-1403 PMID:38720088
Johnson RE, et al. (2023) DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity. J Biol Chem 299(7):104913 PMID:37307920
Klassen R, et al. (2023) Mismatch repair operates at the replication fork in direct competition with mismatch extension by DNA polymerase δ. J Biol Chem 299(4):104598 PMID:36898578
Malik R, et al. (2020) Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nat Struct Mol Biol 27(10):913-924 PMID:32807989
Johnson RE, et al. (2015) A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 59(2):163-175 PMID:26145172
Yoon JH, et al. (2015) Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ. Genes Dev 29(24):2588-602 PMID:26680302
Johnson RE, et al. (2012) Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. Proc Natl Acad Sci U S A 109(31):12455-60 PMID:22711820
Yoon JH, et al. (2012) Requirement of Rad18 protein for replication through DNA lesions in mouse and human cells. Proc Natl Acad Sci U S A 109(20):7799-804 PMID:22547805
Acharya N, et al. (2011) PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc Natl Acad Sci U S A 108(44):17927-32 PMID:22003126
Gangavarapu V, et al. (2011) Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast. mBio 2(3):e00079-11 PMID:21586645
Silverstein TD, et al. (2010) Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η. Structure 18(11):1463-70 PMID:21070945
Acharya N, et al. (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci U S A 106(24):9631-6 PMID:19487673
Pagès V, et al. (2009) Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes Dev 23(12):1438-49 PMID:19528320
Acharya N, et al. (2008) Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A 105(46):17724-9 PMID:19001268
Nair DT, et al. (2008) Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase. Structure 16(2):239-45 PMID:18275815
Pagès V, et al. (2008) Mutational specificity and genetic control of replicative bypass of an abasic site in yeast. Proc Natl Acad Sci U S A 105(4):1170-5 PMID:18202176
Pagès V, et al. (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180(1):73-82 PMID:18757916
Unk I, et al. (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci U S A 105(10):3768-73 PMID:18316726
Zhuang Z, et al. (2008) Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci U S A 105(14):5361-6 PMID:18385374
Acharya N, et al. (2007) Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Mol Cell Biol 27(20):7266-72 PMID:17709386
Blastyák A, et al. (2007) Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28(1):167-75 PMID:17936713
Gangavarapu V, et al. (2007) Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 27(21):7758-64 PMID:17785441
Johnson RE, et al. (2007) A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Mol Cell Biol 27(20):7198-205 PMID:17698580
Ribar B, et al. (2007) ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol Cell Biol 27(8):3211-6 PMID:17296727
Santa Maria SR, et al. (2007) Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 27(23):8409-18 PMID:17923688
Acharya N, et al. (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26(24):9555-63 PMID:17030609
Gangavarapu V, et al. (2006) Mms2-Ubc13-dependent and -independent roles of Rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol 26(20):7783-90 PMID:16908531
Guzder SN, et al. (2006) Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 26(3):1135-41 PMID:16428464
Haracska L, et al. (2006) Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 103(17):6477-82 PMID:16611731
Ribar B, et al. (2006) Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 26(11):3999-4005 PMID:16705154
Unk I, et al. (2006) Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 103(48):18107-12 PMID:17108083
Acharya N, et al. (2005) Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 25(21):9734-40 PMID:16227619
Haracska L, et al. (2005) Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity. Mol Cell Biol 25(22):10183-9 PMID:16260630
Prakash S, et al. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317-53 PMID:15952890
Guzder SN, et al. (2004) Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species. Genes Dev 18(18):2283-91 PMID:15371342
Haracska L, et al. (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24(10):4267-74 PMID:15121847
Washington MT, et al. (2004) Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta. Mol Cell Biol 24(16):6900-6 PMID:15282292
Haracska L, et al. (2003) Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol 23(4):1453-9 PMID:12556503
Johnson RE, et al. (2003) Yeast DNA polymerase zeta (zeta) is essential for error-free replication past thymine glycol. Genes Dev 17(1):77-87 PMID:12514101
Minko IG, et al. (2003) Translesion synthesis past acrolein-derived DNA adduct, gamma -hydroxypropanodeoxyguanosine, by yeast and human DNA polymerase eta. J Biol Chem 278(2):784-90 PMID:12401796
Washington MT, et al. (2003) Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta. Mol Cell Biol 23(14):5107-12 PMID:12832493
Washington MT, et al. (2003) The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme. Mol Cell Biol 23(22):8316-22 PMID:14585988
Washington MT, et al. (2003) Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase eta. Proc Natl Acad Sci U S A 100(21):12093-8 PMID:14527996
Washington MT, et al. (2003) Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proc Natl Acad Sci U S A 100(9):5113-8 PMID:12692307
Lee SK, et al. (2002) Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Cell 109(7):823-34 PMID:12110180
Lee SK, et al. (2002) Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol 22(12):4383-9 PMID:12024048
Torres-Ramos CA, et al. (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22(7):2419-26 PMID:11884624
Unk I, et al. (2002) Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen. Mol Cell Biol 22(18):6480-6 PMID:12192046
Haracska L, et al. (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15(8):945-54 PMID:11316789
Kondratick CM, et al. (2001) Acidic residues critical for the activity and biological function of yeast DNA polymerase eta. Mol Cell Biol 21(6):2018-25 PMID:11238937
Lee SK, et al. (2001) Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol Cell Biol 21(24):8651-6 PMID:11713297
Madril AC, et al. (2001) Fidelity and damage bypass ability of Schizosaccharomyces pombe Eso1 protein, comprised of DNA polymerase eta and sister chromatid cohesion protein Ctf7. J Biol Chem 276(46):42857-62 PMID:11551952
Minko IG, et al. (2001) Translesion DNA synthesis by yeast DNA polymerase eta on templates containing N2-guanine adducts of 1,3-butadiene metabolites. J Biol Chem 276(4):2517-22 PMID:11062246
Trincao J, et al. (2001) Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol Cell 8(2):417-26 PMID:11545743
Unk I, et al. (2001) 3'-phosphodiesterase and 3'-->5' exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol Cell Biol 21(5):1656-61 PMID:11238902
Yu SL, et al. (2001) Requirement of DNA polymerase eta for error-free bypass of UV-induced CC and TC photoproducts. Mol Cell Biol 21(1):185-8 PMID:11113193
Haracska L, et al. (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 25(4):458-61 PMID:10932195
Prakash S, et al. (2000) Role of yeast and human DNA polymerase eta in error-free replication of damaged DNA. Cold Spring Harb Symp Quant Biol 65:51-9 PMID:12760020
Torres-Ramos CA, et al. (2000) Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Mol Cell Biol 20(10):3522-8 PMID:10779341
Washington MT, et al. (2000) Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc Natl Acad Sci U S A 97(7):3094-9 PMID:10725365
Guzder SN, et al. (1999) Synergistic interaction between yeast nucleotide excision repair factors NEF2 and NEF4 in the binding of ultraviolet-damaged DNA. J Biol Chem 274(34):24257-62 PMID:10446201
Johnson RE, et al. (1999) Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc Natl Acad Sci U S A 96(22):12224-6 PMID:10535901
Johnson RE, et al. (1999) Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J Biol Chem 274(23):15975-7 PMID:10347143
Guzder SN, et al. (1998) Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273(47):31541-6 PMID:9813069
Guzder SN, et al. (1998) The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J Biol Chem 273(11):6292-6 PMID:9497356
Habraken Y, et al. (1998) ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J Biol Chem 273(16):9837-41 PMID:9545323
Johnson RE, et al. (1998) Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr Genet 34(1):21-9 PMID:9683672
Johnson RE, et al. (1998) Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12(19):3137-43 PMID:9765213
Worthylake DK, et al. (1998) Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution. J Biol Chem 273(11):6271-6 PMID:9497353
Bailly V, et al. (1997) Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272(37):23360-5 PMID:9287349
Bailly V, et al. (1997) Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein. Mol Cell Biol 17(8):4536-43 PMID:9234711
Guzder SN, et al. (1997) Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 272(35):21665-8 PMID:9268290
Huang H, et al. (1997) The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6693-9 PMID:9343433
Torres-Ramos CA, et al. (1997) Requirement of yeast DNA polymerase delta in post-replicational repair of UV-damaged DNA. J Biol Chem 272(41):25445-8 PMID:9325255
Guzder SN, et al. (1996) RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J Biol Chem 271(31):18314-7 PMID:8702468
Guzder SN, et al. (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 271(15):8903-10 PMID:8621533
Habraken Y, et al. (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol 6(9):1185-7 PMID:8805366
Habraken Y, et al. (1996) Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc Natl Acad Sci U S A 93(20):10718-22 PMID:8855246
Johnson RE, et al. (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271(45):27987-90 PMID:8910404
Lauder S, et al. (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 16(12):6783-93 PMID:8943333
Saparbaev M, et al. (1996) Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142(3):727-36 PMID:8849883
Sung P, et al. (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem 271(18):10821-6 PMID:8631896
Torres-Ramos CA, et al. (1996) Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A 93(18):9676-81 PMID:8790390
Guzder SN, et al. (1995) Lethality in yeast of trichothiodystrophy (TTD) mutations in the human xeroderma pigmentosum group D gene. Implications for transcriptional defect in TTD. J Biol Chem 270(30):17660-3 PMID:7629061
Guzder SN, et al. (1995) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem 270(15):8385-8 PMID:7721729
Guzder SN, et al. (1995) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270(22):12973-6 PMID:7768886
Habraken Y, et al. (1995) Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J Biol Chem 270(50):30194-8 PMID:8530429
Johnson RE, et al. (1995) Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science 269(5221):238-40 PMID:7618086
Sommers CH, et al. (1995) Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5'- to 3'-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J Biol Chem 270(9):4193-6 PMID:7876174
Yan YX, et al. (1995) Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr Genet 28(1):12-8 PMID:8536308
Bailly V, et al. (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8(7):811-20 PMID:7926769
Habraken Y, et al. (1994) A conserved 5' to 3' exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG. J Biol Chem 269(50):31342-5 PMID:7989298
Johnson RE, et al. (1994) Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase. J Biol Chem 269(45):28259-62 PMID:7961763
Guzder SN, et al. (1993) Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A 90(12):5433-7 PMID:8516285
Qiu H, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev 7(11):2161-71 PMID:7693549
Sung P, et al. (1993) Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. J Biol Chem 268(35):26391-9 PMID:8253764
Watkins JF, et al. (1993) The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev 7(2):250-61 PMID:8436296
Watkins JF, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13(12):7757-65 PMID:8246991
Bailly V, et al. (1992) Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc Natl Acad Sci U S A 89(17):8273-7 PMID:1518857
Bankmann M, et al. (1992) Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 355(6360):555-8 PMID:1741034
Johnson RE, et al. (1992) Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol 12(9):3807-18 PMID:1324406
Park E, et al. (1992) RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A 89(23):11416-20 PMID:1333609
Reynolds PR, et al. (1992) The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res 20(9):2327-34 PMID:1534406
Jones JS and Prakash L (1991) Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucleic Acids Res 19(4):893-8 PMID:2017370
Koken MH, et al. (1991) Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci U S A 88(20):8865-9 PMID:1717990
Sung P, et al. (1991) Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol 221(3):745-9 PMID:1658333
Jones JS, et al. (1990) Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation. Nucleic Acids Res 18(11):3281-5 PMID:2192359
Madura K, et al. (1990) Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res 18(4):771-8 PMID:2179869
Reynolds P, et al. (1990) The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J 9(5):1423-30 PMID:2184030
Schiestl RH, et al. (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124(4):817-31 PMID:2182387
Sung P, et al. (1990) Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci U S A 87(7):2695-9 PMID:2157209
Schiestl RH, et al. (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9(5):1882-96 PMID:2664461
van Duin M, et al. (1989) Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions. Mol Cell Biol 9(4):1794-8 PMID:2471070
Jones JS, et al. (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16(14B):7119-31 PMID:2970061
Morrison A, et al. (1988) Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol Cell Biol 8(3):1179-85 PMID:3285176
Sung P, et al. (1988) Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J 7(10):3263-9 PMID:2846277
Sung P, et al. (1988) The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2(11):1476-85 PMID:2850263
Reynolds P, et al. (1987) Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol Cell Biol 7(3):1012-20 PMID:3550428
Polakowska R, et al. (1986) Alkylation mutagenesis in Saccharomyces cerevisiae: lack of evidence for an adaptive response. Curr Genet 10(9):647-55 PMID:3329040
Reynolds P, et al. (1985) The nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucleic Acids Res 13(7):2357-72 PMID:2987851
Reynolds P, et al. (1985) RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci U S A 82(1):168-72 PMID:3881753
Miller RD, et al. (1984) Different effects of RAD genes of Saccharomyces cerevisiae on incisions of interstrand crosslinks and monoadducts in DNA induced by psoralen plus near UV light treatment. Photochem Photobiol 39(3):349-52 PMID:6371851
Higgins DR, et al. (1983) Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants. Proc Natl Acad Sci U S A 80(18):5680-4 PMID:16593371
Miller RD, et al. (1982) Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol Cell Biol 2(8):939-48 PMID:6752694
Miller RD, et al. (1982) Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Mol Gen Genet 188(2):235-9 PMID:6759871
Prakash L and Higgins D (1982) Role of DNA repair in ethyl methanesulfonate-induced mutagenesis in Saccharomyces cerevisiae. Carcinogenesis 3(4):439-44 PMID:7046978
Crosby B, et al. (1981) Purification and characterization of a uracil-DNA glycosylase from the yeast. Saccharomyces cerevisiae. Nucleic Acids Res 9(21):5797-809 PMID:7031606
Martin P, et al. (1981) a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae. J Bacteriol 146(2):684-91 PMID:7012135
Montelone B, et al. (1981) Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Curr Genet 4:223-232
Montelone BA, et al. (1981) Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae. Curr Genet 4(3):223-32 PMID:24185997
Montelone BA, et al. (1981) Spontaneous mitotic recombination in mms8-1, an allele of the CDC9 gene of Saccharomyces cerevisiae. J Bacteriol 147(2):517-25 PMID:7021533
Montelone BA, et al. (1981) Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: evidence for multiple functions of the RAD6 gene. Mol Gen Genet 184(3):410-5 PMID:7038392
Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184(3):471-8 PMID:7038396
Prakash L and Taillon-Miller P (1981) Effects of the rad52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Curr Genet 3(3):247-50 PMID:24190138
Wilcox DR and Prakash L (1981) Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J Bacteriol 148(2):618-23 PMID:7028721
Prakash L and Prakash S (1979) Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet 176(3):351-9 PMID:392238
Prakash L, et al. (1979) Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol Gen Genet 172(3):249-58 PMID:45608
Prakash L (1977) Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae. Mol Gen Genet 152(3):125-8 PMID:327268
Prakash L (1977) Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res 45(1):13-20 PMID:335235
Prakash S and Prakash L (1977) Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 87(2):229-36 PMID:200524
Prakash L (1976) Effect of Genes Controlling Radiation Sensitivity on Chemically Induced Mutations in SACCHAROMYCES CEREVISIAE. Genetics 83(2):285-301 PMID:17248715
Prakash L and Sherman F (1974) Differentiation between amber and ochre mutants of yeast by reversion with 4-nitroquinoline-1-oxide. Genetics 77(2):245-54 PMID:4603163