AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Nishimura A
  • References

Author: Nishimura A


References 41 references


No citations for this author.

Download References (.nbib)

  • Isogai S, et al. (2024) Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of Saccharomyces cerevisiae. Appl Environ Microbiol 90(4):e0015524 PMID:38456673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Isogai S, et al. (2024) Functional analysis of a S-adenosylmethionine-insensitive methylenetetrahydrofolate reductase identified in methionine-accumulating yeast mutants. Biosci Biotechnol Biochem 89(1):124-132 PMID:39496525
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A (2024) Regulations and functions of proline utilization in yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 88(2):131-137 PMID:37994668
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2024) Identification of an arginine transporter in Candida glabrata. J Gen Appl Microbiol 69(4):229-233 PMID:37005249
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2024) Longevity control by supersulfide-mediated mitochondrial respiration and regulation of protein quality. Redox Biol 69:103018 PMID:38199039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2024) The arginine transporter Can1 negatively regulates biofilm formation in yeasts. Front Microbiol 15:1419530 PMID:38903792
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2024) The Yeast F-Box Protein Met30 Regulates Proline Utilization Independently of Transceptor Can1 Under Nutrient-Rich Conditions. Microorganisms 12(12) PMID:39770713
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Isogai S, et al. (2023) Improvement of valine and isobutanol production in sake yeast by Ala31Thr substitution in the regulatory subunit of acetohydroxy acid synthase. FEMS Yeast Res 23 PMID:36812944
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2023) Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 87(4):458-462 PMID:36694939
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2023) PKA-Msn2/4-Shy1 cascade controls inhibition of proline utilization under wine fermentation models. J Biosci Bioeng 136(6):438-442 PMID:37940488
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanahashi R, et al. (2023) The arginine transporter Can1 acts as a transceptor for regulation of proline utilization in the yeast Saccharomyces cerevisiae. Yeast 40(8):333-348 PMID:36573467
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanahashi R, et al. (2023) Isolation of Yeast Strains with Higher Proline Uptake and Their Applications to Beer Fermentation. J Fungi (Basel) 9(12) PMID:38132738
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Isogai S, et al. (2022) High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in Saccharomyces cerevisiae. Appl Environ Microbiol 88(5):e0213021 PMID:35020456
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2022) Isolation and analysis of a sake yeast mutant with phenylalanine accumulation. J Ind Microbiol Biotechnol 49(3) PMID:34788829
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2022) Arginine inhibits Saccharomyces cerevisiae biofilm formation by inducing endocytosis of the arginine transporter Can1. Biosci Biotechnol Biochem 86(9):1300-1307 PMID:35749478
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2022) The Cdc25/Ras/cAMP-dependent protein kinase A signaling pathway regulates proline utilization in wine yeast Saccharomyces cerevisiae under a wine fermentation model. Biosci Biotechnol Biochem 86(9):1318-1326 PMID:35749464
    • SGD Paper
    • DOI full text
    • PubMed
  • Isogai S, et al. (2021) High-Level Production of Lysine in the Yeast Saccharomyces cerevisiae by Rational Design of Homocitrate Synthase. Appl Environ Microbiol 87(15):e0060021 PMID:33990312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2021) Longevity Regulation by Proline Oxidation in Yeast. Microorganisms 9(8) PMID:34442729
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2021) Role of Gln79 in Feedback Inhibition of the Yeast γ-Glutamyl Kinase by Proline. Microorganisms 9(9) PMID:34576795
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tanahashi R, et al. (2021) Downregulation of the broad-specificity amino acid permease Agp1 mediated by the ubiquitin ligase Rsp5 and the arrestin-like protein Bul1 in yeast. Biosci Biotechnol Biochem 85(5):1266-1274 PMID:33620458
    • SGD Paper
    • DOI full text
    • PubMed
  • Murakami N, et al. (2020) Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing. J Ind Microbiol Biotechnol 47(9-10):715-723 PMID:32748014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2020) Inhibitory effect of arginine on proline utilization in Saccharomyces cerevisiae. Yeast 37(9-10):531-540 PMID:32557770
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2020) The yeast α-arrestin Art3 is a key regulator for arginine-induced endocytosis of the high-affinity proline transporter Put4. Biochem Biophys Res Commun 531(3):416-421 PMID:32800549
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanahashi R, et al. (2020) The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source. FEMS Yeast Res 20(7) PMID:33201982
    • SGD Paper
    • DOI full text
    • PubMed
  • Tatebayashi K, et al. (2020) Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 39(5):e103444 PMID:32011004
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2019) Mitochondrial cysteinyl-tRNA synthetase is expressed via alternative transcriptional initiation regulated by energy metabolism in yeast cells. J Biol Chem 294(37):13781-13788 PMID:31350340
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nishimura A, et al. (2016) Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Mol Cell Biol 36(7):1109-23 PMID:26787842
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoshikawa Y, et al. (2016) Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide 57:85-91 PMID:27178802
    • SGD Paper
    • DOI full text
    • PubMed
  • Tatebayashi K, et al. (2015) Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat Commun 6:6975 PMID:25898136
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nasuno R, et al. (2014) Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 9(11):e113788 PMID:25423296
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tanaka K, et al. (2014) Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal 7(314):ra21 PMID:24570489
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2013) The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem Biophys Res Commun 430(1):137-43 PMID:23159617
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2012) The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett 586(16):2411-6 PMID:22698729
    • SGD Paper
    • DOI full text
    • PubMed
  • Akao T, et al. (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423-34 PMID:21900213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sakasegawa S, et al. (2011) Colorimetric inorganic pyrophosphate assay using a double cycling enzymatic method. Anal Biochem 416(1):61-6 PMID:21621500
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10(6):687-98 PMID:20550582
    • SGD Paper
    • DOI full text
    • PubMed
  • Mizoguchi H, et al. (2002) Different missense mutations in PDR1 and PDR3 genes from clotrimazole-resistant sake yeast are responsible for pleiotropic drug resistance and improved fermentative activity. J Biosci Bioeng 93(2):221-7 PMID:16233191
    • SGD Paper
    • DOI full text
    • PubMed
  • Akamatsu S, et al. (2000) Effects of aldehyde dehydrogenase and acetyl-CoA synthetase on acetate formation in sake mash. J Biosci Bioeng 90(5):555-60 PMID:16232909
    • SGD Paper
    • PubMed
  • Kubodera T, et al. (2000) Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 64(7):1416-21 PMID:10945258
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe M, et al. (2000) Disruption of the ABC transporter genes PDR5, YOR1, and SNQ2, and their participation in improved fermentative activity of a sake yeast mutant showing pleiotropic drug resistance. J Biosci Bioeng 89(6):569-76 PMID:16232800
    • SGD Paper
    • DOI full text
    • PubMed
  • Mizoguchi H, et al. (1999) Characterization of a PDR1 mutant allele from a clotrimazole-resistant sake yeast mutant with improved fermentative activity. J Biosci Bioeng 88(1):20-5 PMID:16232567
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top