Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S. cerevisiae (ScLys20) for high-level production of lysine in yeast cells. In silico docking of the substrate 2-OG and the inhibitor lysine to ScLys20 predicted that the substitution of serine with glutamate at position 385 would be more suitable for desensitization of the lysine feedback inhibition than the substitution from serine to phenylalanine in the already known Ser385Phe variant. Enzymatic analysis revealed that the Ser385Glu variant is far more insensitive to feedback inhibition than the Ser385Phe variant. We also found that the lysine contents in yeast cells expressing the Ser385Glu variant were 4.62- and 1.47-fold higher than those of cells expressing the wild-type HCS and Ser385Phe variant, respectively, due to the extreme desensitization to feedback inhibition. In this study, we obtained highly feedback inhibition-insensitive HCS using in silico docking and enzymatic analysis. Our results indicate that the rational engineering of HCS for feedback inhibition desensitization by lysine could be useful for constructing new yeast strains with higher lysine productivity. IMPORTANCE A traditional method for screening toxic analogue-resistant mutants has been established for the breeding of microbes that produce high levels of amino acids, including lysine. However, another efficient strategy is required to further improve their productivity. Homocitrate synthase (HCS) catalyzes the first step of lysine biosynthesis in the yeast Saccharomyces cerevisiae, and its activity is subject to feedback inhibition by lysine. Here, in silico design of a key enzyme that regulates the biosynthesis of lysine was utilized to increase the productivity of lysine. We designed HCS for the high-level production of lysine in yeast cells by in silico docking simulation. The engineered HCS exhibited much less sensitivity to lysine and conferred higher production of lysine than the already known variant obtained by traditional breeding. The combination of in silico design and experimental analysis of a key enzyme will contribute to advances in metabolic engineering for the construction of industrial microorganisms.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | File | Description |
---|