Martinez JA, et al. (2022) Controlling microbial co-culture based on substrate pulsing can lead to stability through differential fitness advantages. PLoS Comput Biol 18(10):e1010674 PMID:36315576
Mojardín L, et al. (2018) Lack of the NAD+-dependent glycerol 3-phosphate dehydrogenase impairs the function of transcription factors Sip4 and Cat8 required for ethanol utilization in Kluyveromyces lactis. Fungal Genet Biol 111:16-29 PMID:29175366
Vega M, et al. (2016) Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex. J Biol Chem 291(14):7267-85 PMID:26865637
Peláez R, et al. (2009) Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway. J Biol Chem 284(31):20548-55 PMID:19525230
Riera A, et al. (2008) Human pancreatic beta-cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell. Biochem J 415(2):233-9 PMID:18588509
Ahuatzi D, et al. (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282(7):4485-4493 PMID:17178716
Palomino A, et al. (2006) Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 34(5):1427-38 PMID:16528100
Platara M, et al. (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281(48):36632-42 PMID:17023428
Palomino A, et al. (2005) Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae. Biochem J 388(Pt 2):697-703 PMID:15705057
Ahuatzi D, et al. (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem 279(14):14440-6 PMID:14715653
Ferrer-Martínez A, et al. (2004) A glucose response element from the S. cerevisiae hexose transporter HXT1 gene is sensitive to glucose in human fibroblasts. J Mol Biol 338(4):657-67 PMID:15099735
López ML, et al. (2004) Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation. Curr Genet 44(6):305-16 PMID:14569415
Moreno F and Herrero P (2002) The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol Rev 26(1):83-90 PMID:12007644
de la Cera T, et al. (2002) Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. J Mol Biol 319(3):703-14 PMID:12054864
Moreno-Herrero F, et al. (2001) Imaging and mapping protein-binding sites on DNA regulatory regions with atomic force microscopy. Biochem Biophys Res Commun 280(1):151-7 PMID:11162492
Rodríguez A, et al. (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355(Pt 3):625-31 PMID:11311123
Chaves RS, et al. (1999) Med8, a subunit of the mediator CTD complex of RNA polymerase II, directly binds to regulatory elements of SUC2 and HXK2 genes. Biochem Biophys Res Commun 254(2):345-50 PMID:9918841
Herrero P, et al. (1999) Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Biochem J 343 Pt 2(Pt 2):319-25 PMID:10510295
Moreno-Herrero F, et al. (1999) Analysis by atomic force microscopy of Med8 binding to cis-acting regulatory elements of the SUC2 and HXK2 genes of saccharomyces cerevisiae. FEBS Lett 459(3):427-32 PMID:10526178
Herrero P, et al. (1998) The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434(1-2):71-6 PMID:9738454
Ordiz I, et al. (1998) A 27 kDa protein binds to a positive and a negative regulatory sequence in the promoter of the ICL1 gene from Saccharomyces cerevisiae. Biochem J 329 ( Pt 2)(Pt 2):383-8 PMID:9425123
Randez-Gil F, et al. (1998) Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett 425(3):475-8 PMID:9563516
Herrero P, et al. (1996) Identification and characterisation of two transcriptional repressor elements within the coding sequence of the Saccharomyces cerevisiae HXK2 gene. Nucleic Acids Res 24(10):1822-8 PMID:8657561
Ordiz I, et al. (1996) Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk1 and Tpk2. FEBS Lett 385(1-2):43-6 PMID:8641464
Ordiz I, et al. (1995) Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by an internal decapeptide sequence. FEBS Lett 367(3):219-22 PMID:7607310
Fernandez E, et al. (1993) Transcriptional regulation of the isocitrate lyase encoding gene in Saccharomyces cerevisiae. FEBS Lett 333(3):238-42 PMID:8224185
McKenzie EA, et al. (1993) The centromere and promoter factor, 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4. Mol Gen Genet 240(3):374-86 PMID:8413187
Fernández MT, et al. (1987) Proteolysis of hexokinase PII is not the triggering signal of carbon catabolite derepression in Saccharomyces cerevisiae. J Gen Microbiol 133(9):2509-16 PMID:3329214
Fernández R, et al. (1986) Mechanism of inactivation of hexokinase PII of Saccharomyces cerevisiae by D-xylose. J Gen Microbiol 132(12):3467-72 PMID:3309137
Moreno F, et al. (1986) Hexokinase PII from Saccharomyces cerevisiae is regulated by changes in the cytosolic Mg2+-free ATP concentration. Eur J Biochem 161(3):565-9 PMID:3539593