AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Kucharczyk R
  • References

Author: Kucharczyk R


References 47 references


No citations for this author.

Download References (.nbib)

  • Masanta S, et al. (2024) Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 73:103201 PMID:38795545
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zuttion S, et al. (2024) Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 706:75-95 PMID:39455235
    • SGD Paper
    • DOI full text
    • PubMed
  • Baranowska E, et al. (2023) Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032T>C. Hum Mol Genet 32(8):1313-1323 PMID:36434790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baranowska E, et al. (2023) Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 16(4) PMID:37083953
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Enkler L, et al. (2023) Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis. Nat Cell Biol 25(8):1157-1172 PMID:37400497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Panja C, et al. (2023) ATP synthase interactome analysis identifies a new subunit l as a modulator of permeability transition pore in yeast. Sci Rep 13(1):3839 PMID:36882574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Panja C, et al. (2023) Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 13(1):9972 PMID:37340059
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hemmerle M, et al. (2022) Visualizing Mitochondrial Importability of a Protein Using the Yeast Bi-Genomic Mitochondrial-Split-GFP Strain and an Ordinary Fluorescence Microscope. Methods Mol Biol 2497:255-267 PMID:35771447
    • SGD Paper
    • DOI full text
    • PubMed
  • Kabala AM, et al. (2022) Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 220(3) PMID:35100419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tribouillard-Tanvier D, et al. (2022) Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. Methods Mol Biol 2497:221-242 PMID:35771445
    • SGD Paper
    • DOI full text
    • PubMed
  • Su X, et al. (2021) The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 30(5):381-392 PMID:33600551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bader G, et al. (2020) Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP. Elife 9 PMID:32657755
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ding Q, et al. (2020) Case Report: Identification of a Novel Variant (m.8909T>C) of Human Mitochondrial ATP6 Gene and Its Functional Consequences on Yeast ATP Synthase. Life (Basel) 10(9) PMID:32971864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niedzwiecka K, et al. (2020) ATP Synthase Subunit a Supports Permeability Transition in Yeast Lacking Dimerization Subunits and Modulates yPTP Conductance. Cell Physiol Biochem 54(2):211-229 PMID:32100973
    • SGD Paper
    • DOI full text
    • PubMed
  • Su X, et al. (2020) Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene. Int J Mol Sci 21(14) PMID:32708436
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kucharczyk R, et al. (2019) Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176 T>G mutation. Biochim Biophys Acta Bioenerg 1860(1):52-59 PMID:30414414
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2019) The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase. Biochim Biophys Acta Bioenerg 1860(7):562-572 PMID:31181185
    • SGD Paper
    • DOI full text
    • PubMed
  • Carraro M, et al. (2018) High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cell Physiol Biochem 50(5):1840-1855 PMID:30423558
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen E, et al. (2018) Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT. Sci Rep 8(1):5915 PMID:29651047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dautant A, et al. (2018) ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol 9:329 PMID:29670542
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klim J, et al. (2018) Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3 (Bethesda) 8(6):2121-2134 PMID:29703784
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niedzwiecka K, et al. (2018) Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. Biochim Biophys Acta Mol Cell Res 1865(1):117-131 PMID:28986220
    • SGD Paper
    • DOI full text
    • PubMed
  • Skoczeń N, et al. (2018) Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. Biochim Biophys Acta Bioenerg 1859(8):602-611 PMID:29778688
    • SGD Paper
    • DOI full text
    • PubMed
  • Sreelatha A, et al. (2018) Protein AMPylation by an Evolutionarily Conserved Pseudokinase. Cell 175(3):809-821.e19 PMID:30270044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Taffin de Tilques M, et al. (2018) Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. Microb Cell 5(5):220-232 PMID:29796387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niedzwiecka K, et al. (2016) Yeast models of mutations in the mitochondrial ATP6 gene found in human cancer cells. Mitochondrion 29:7-17 PMID:27083309
    • SGD Paper
    • DOI full text
    • PubMed
  • Lasserre JP, et al. (2015) Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 8(6):509-26 PMID:26035862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aiyar RS, et al. (2014) Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nat Commun 5:5585 PMID:25519239
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kabala AM, et al. (2014) Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 100:200-6 PMID:24316278
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2013) Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 45(1):130-40 PMID:22789932
    • SGD Paper
    • DOI full text
    • PubMed
  • Wysocka-Kapcinska M, et al. (2013) The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast. PLoS One 8(9):e74187 PMID:24073201
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bietenhader M, et al. (2012) Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 8(8):e1002876 PMID:22916027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wysocka-Kapcińska M and Kucharczyk R (2012) [Structure, biogenesis and mechanism of function of the mitochondrial ATP synthase complex]. Postepy Biochem 58(3):344-52 PMID:23373419
    • SGD Paper
    • PubMed
  • Couplan E, et al. (2011) A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci U S A 108(29):11989-94 PMID:21715656
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kucharczyk R, et al. (2010) Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. Biochim Biophys Acta 1797(6-7):1105-12 PMID:20056103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piekarska I, et al. (2010) Mutants of the Saccharomyces cerevisiae VPS genes CCZ1 and YPT7 are blocked in different stages of sporulation. Eur J Cell Biol 89(11):780-7 PMID:20709422
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoffman-Sommer M, et al. (2009) Mutations in the Saccharomyces cerevisiae vacuolar fusion proteins Ccz1, Mon1 and Ypt7 cause defects in cell cycle progression in a num1Delta background. Eur J Cell Biol 88(11):639-52 PMID:19700218
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2009) Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology. Hum Mol Genet 18(15):2889-98 PMID:19454486
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2009) The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery. FEMS Yeast Res 9(4):565-73 PMID:19456873
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2009) Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 1793(5):817-24 PMID:19269308
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (2007) The leader peptide of yeast Atp6p is required for efficient interaction with the Atp9p ring of the mitochondrial ATPase. J Biol Chem 282(50):36167-76 PMID:17940284
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoffman-Sommer M, et al. (2005) Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 329(1):197-204 PMID:15721293
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R and Rytka J (2001) Saccharomyces cerevisiae--a model organism for the studies on vacuolar transport. Acta Biochim Pol 48(4):1025-42 PMID:11995965
    • SGD Paper
    • PubMed
  • Kucharczyk R, et al. (2001) The Ccz1 protein interacts with Ypt7 GTPase during fusion of multiple transport intermediates with the vacuole in S. cerevisiae. J Cell Sci 114(Pt 17):3137-45 PMID:11590240
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (2000) The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p. J Cell Sci 113 Pt 23:4301-11 PMID:11069774
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (1999) Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals. Yeast 15(10B):987-1000 PMID:10407278
    • SGD Paper
    • DOI full text
    • PubMed
  • Kucharczyk R, et al. (1998) The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis. FEBS Lett 424(3):127-30 PMID:9539135
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top