Zuttion S, et al. (2024) Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 706:75-95 PMID:39455235
Baranowska E, et al. (2023) Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032T>C. Hum Mol Genet 32(8):1313-1323 PMID:36434790
Panja C, et al. (2023) ATP synthase interactome analysis identifies a new subunit l as a modulator of permeability transition pore in yeast. Sci Rep 13(1):3839 PMID:36882574
Panja C, et al. (2023) Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 13(1):9972 PMID:37340059
Hemmerle M, et al. (2022) Visualizing Mitochondrial Importability of a Protein Using the Yeast Bi-Genomic Mitochondrial-Split-GFP Strain and an Ordinary Fluorescence Microscope. Methods Mol Biol 2497:255-267 PMID:35771447
Kabala AM, et al. (2022) Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 220(3) PMID:35100419
Tribouillard-Tanvier D, et al. (2022) Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. Methods Mol Biol 2497:221-242 PMID:35771445
Su X, et al. (2021) The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 30(5):381-392 PMID:33600551
Bader G, et al. (2020) Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP. Elife 9 PMID:32657755
Ding Q, et al. (2020) Case Report: Identification of a Novel Variant (m.8909T>C) of Human Mitochondrial ATP6 Gene and Its Functional Consequences on Yeast ATP Synthase. Life (Basel) 10(9) PMID:32971864
Su X, et al. (2020) Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene. Int J Mol Sci 21(14) PMID:32708436
Kucharczyk R, et al. (2019) Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176 T>G mutation. Biochim Biophys Acta Bioenerg 1860(1):52-59 PMID:30414414
Kucharczyk R, et al. (2019) The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase. Biochim Biophys Acta Bioenerg 1860(7):562-572 PMID:31181185
Carraro M, et al. (2018) High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cell Physiol Biochem 50(5):1840-1855 PMID:30423558
Chen E, et al. (2018) Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT. Sci Rep 8(1):5915 PMID:29651047
Klim J, et al. (2018) Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3 (Bethesda) 8(6):2121-2134 PMID:29703784
Niedzwiecka K, et al. (2018) Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. Biochim Biophys Acta Mol Cell Res 1865(1):117-131 PMID:28986220
Skoczeń N, et al. (2018) Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. Biochim Biophys Acta Bioenerg 1859(8):602-611 PMID:29778688
de Taffin de Tilques M, et al. (2018) Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. Microb Cell 5(5):220-232 PMID:29796387
Lasserre JP, et al. (2015) Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 8(6):509-26 PMID:26035862
Kabala AM, et al. (2014) Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 100:200-6 PMID:24316278
Kucharczyk R, et al. (2013) Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 45(1):130-40 PMID:22789932
Wysocka-Kapcinska M, et al. (2013) The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast. PLoS One 8(9):e74187 PMID:24073201
Bietenhader M, et al. (2012) Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 8(8):e1002876 PMID:22916027
Wysocka-Kapcińska M and Kucharczyk R (2012) [Structure, biogenesis and mechanism of function of the mitochondrial ATP synthase complex]. Postepy Biochem 58(3):344-52 PMID:23373419
Couplan E, et al. (2011) A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci U S A 108(29):11989-94 PMID:21715656
Kucharczyk R, et al. (2010) Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. Biochim Biophys Acta 1797(6-7):1105-12 PMID:20056103
Piekarska I, et al. (2010) Mutants of the Saccharomyces cerevisiae VPS genes CCZ1 and YPT7 are blocked in different stages of sporulation. Eur J Cell Biol 89(11):780-7 PMID:20709422
Hoffman-Sommer M, et al. (2009) Mutations in the Saccharomyces cerevisiae vacuolar fusion proteins Ccz1, Mon1 and Ypt7 cause defects in cell cycle progression in a num1Delta background. Eur J Cell Biol 88(11):639-52 PMID:19700218
Kucharczyk R, et al. (2009) Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology. Hum Mol Genet 18(15):2889-98 PMID:19454486
Kucharczyk R, et al. (2009) The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery. FEMS Yeast Res 9(4):565-73 PMID:19456873
Kucharczyk R, et al. (2009) Biochemical consequences in yeast of the human mitochondrial DNA 8993T>C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 1793(5):817-24 PMID:19269308
Zeng X, et al. (2007) The leader peptide of yeast Atp6p is required for efficient interaction with the Atp9p ring of the mitochondrial ATPase. J Biol Chem 282(50):36167-76 PMID:17940284
Hoffman-Sommer M, et al. (2005) Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 329(1):197-204 PMID:15721293
Kucharczyk R and Rytka J (2001) Saccharomyces cerevisiae--a model organism for the studies on vacuolar transport. Acta Biochim Pol 48(4):1025-42 PMID:11995965
Kucharczyk R, et al. (2001) The Ccz1 protein interacts with Ypt7 GTPase during fusion of multiple transport intermediates with the vacuole in S. cerevisiae. J Cell Sci 114(Pt 17):3137-45 PMID:11590240
Kucharczyk R, et al. (2000) The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p. J Cell Sci 113 Pt 23:4301-11 PMID:11069774
Kucharczyk R, et al. (1999) Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals. Yeast 15(10B):987-1000 PMID:10407278
Kucharczyk R, et al. (1998) The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis. FEBS Lett 424(3):127-30 PMID:9539135