Reference: Kucharczyk R, et al. (2019) Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176\u202fT>G mutation. Biochim Biophys Acta Bioenerg 1860(1):52-59

Reference Help

Abstract


Protons are transported from the mitochondrial matrix to the intermembrane space of mitochondria during the transfer of electrons to oxygen and shuttled back to the matrix by the a subunit and a ring of identical c subunits across the membrane domain (FO) of ATP synthase, which is coupled to ATP synthesis. A mutation (m.9176 T > G) of the mitochondrial ATP6 gene that replaces an universally conserved leucine residue into arginine at amino acid position 217 of human subunit a (aL217R) has been associated to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally Inherited Leigh's Syndrome) diseases. We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aL237R) severely impairs subunit a assembly/stability and decreases by >90% the rate of mitochondrial ATP synthesis. Herein we identified three spontaneous first-site intragenic suppressors (aR237M, aR237T and aR237S) that fully restore ATP synthase assembly. However, mitochondrial ATP synthesis rate was only partially recovered (40-50% vs wild type yeast). In light of recently described high-resolution yeast ATP synthase structures, the detrimental consequences of the aL237R change can be explained by steric and electrostatic hindrance with the universally conserved subunit a arginine residue (aR176) that is essential to FO activity. aL237 together with three other nearby hydrophobic residues have been proposed to prevent ion shortage between two physically separated hydrophilic pockets within the FO. Our results suggest that aL237 favors subunit c-ring rotation by optimizing electrostatic interaction between aR176 and an acidic residue in subunit c (cE59) known to be essential also to the activity of FO.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kucharczyk R, Dautant A, Godard F, Tribouillard-Tanvier D, di Rago JP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference