Background/aims: Mitochondrial ATP synthase, in addition to being involved in ATP synthesis, is involved in permeability transition pore (PTP) formation, which precedes apoptosis in mammalian cells and programmed cell death in yeast. Mutations in genes encoding ATP synthase subunits cause neuromuscular disorders and have been identified in cancer samples. PTP is also involved in pathology. We previously found that in Saccharomyces cerevisiae, two mutations in ATP synthase subunit a (atp6-P163S and atp6-K90E, equivalent to those detected in prostate and thyroid cancer samples, respectively) in the OM45-GFP background affected ROS and calcium homeostasis and delayed yeast PTP (yPTP) induction upon calcium treatment by modulating the dynamics of ATP synthase dimer/oligomer formation. The Om45 protein is a component of the porin complex, which is equivalent to mammalian VDAC. We aimed to investigate yPTP function in atp6-P163S and atp6-K90E mutants lacking the e and g dimerization subunits of ATP synthase.
Methods: Triple mutants with the atp6-P163S or atp6-K90E mutation, the OM45-GFP gene and deletion of the TIM11 gene encoding subunit e were constructed by crossing and tetrad dissection. In spores capable of growing, the original atp6 mutations reverted to wild type, and two compensatory mutations, namely, atp6-C33S-T215C, were selected. The effects of these mutations on cellular physiology, mitochondrial morphology, bioenergetics and permeability transition (PT) were analyzed by fluorescence and electron microscopy, mitochondrial respiration, ATP synthase activity, calcium retention capacity and swelling assays.
Results: The atp6-C33S-T215C mutations in the OM45-GFP background led to delayed growth at elevated temperature on both fermentative and respiratory media and increased sensitivity to high calcium ions concentration or hydrogen peroxide in the medium. The ATP synthase activity was reduced by approximately 50% and mitochondrial network was hyperfused in these cells grown at elevated temperature. The atp6-C33S-T215C stabilized ATP synthase dimers and restored the yPTP properties in Tim11∆ cells. In OM45-GFP cells, in which Tim11 is present, these mutations increased the fraction of swollen mitochondria by up to 85% vs 60% in the wild type, although the time required for calcium release doubled.
Conclusion: ATP synthase subunit e is essential in the S. cerevisiae atp6-P163S and atp6-K90E mutants. In addition to subunits e and g, subunit a is critical for yPTP induction and conduction. The increased yPTP conduction decrease the S. cerevisiae cell fitness.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|