AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Klionsky DJ
  • References

Author: Klionsky DJ


References 282 references


No citations for this author.

Download References (.nbib)

  • Huang Y and Klionsky DJ (2025) Pho81 is a novel regulator of pexophagy induced by phosphate starvation. Autophagy 21(6):1171-1172 PMID:38991544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lei Y, et al. (2025) Cancer-associated mutations in autophagy-related proteins analyzed in yeast and human cells. Autophagy 1-17 PMID:40017376
    • SGD Paper
    • DOI full text
    • PubMed
  • Metur SP, et al. (2025) Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation. Cell Rep 44(2):115316 PMID:39954250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Metur SP, et al. (2025) Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation. Cell Rep 44(6):115847 PMID:40504687
    • SGD Paper
    • DOI full text
    • PubMed
  • Popelka H and Klionsky DJ (2025) The emerging significance of Vac8, a multi-purpose armadillo-repeat protein in yeast. Autophagy 21(5):913-916 PMID:39045779
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lei Y, et al. (2024) Big1 is a newly identified autophagy regulator that is critical for a fully functional V-ATPase. Mol Biol Cell 35(11):br20 PMID:39259764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Metur SP and Klionsky DJ (2024) Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 598(1):32-47 PMID:37758520
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thaprawat P, et al. (2024) TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in Toxoplasma gondii. Autophagy Rep 3(1) PMID:39600488
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Antoniuk-Majchrzak J, et al. (2023) Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. Biochim Biophys Acta Mol Cell Res 1870(7):119526 PMID:37364618
    • SGD Paper
    • DOI full text
    • PubMed
  • Delorme-Axford E, et al. (2023) The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Autophagy 19(10):2719-2732 PMID:37345792
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E, et al. (2023) The Pho23-Rpd3 histone deacetylase complex regulates the yeast metabolic transcription factor Stb5. MicroPubl Biol 2023 PMID:37692089
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fukuda T, et al. (2023) The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol Cell 83(12):2045-2058.e9 PMID:37192628
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hawkins WD, et al. (2023) The world's first (and probably last) autophagy video game. Autophagy 19(1):352-357 PMID:36324276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lei Y and Klionsky DJ (2023) Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 30(6):1416-1429 PMID:37045910
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2023) Autophagic structures revealed by cryo-electron tomography: new clues about autophagosome biogenesis. Autophagy 19(5):1375-1377 PMID:36722820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H, et al. (2023) The Intrinsically Disordered N Terminus in Atg12 from Yeast Is Necessary for the Functional Structure of the Protein. Int J Mol Sci 24(20) PMID:37894717
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen ZF, et al. (2023) Current opinions on mitophagy in fungi. Autophagy 19(3):747-757 PMID:35793406
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang L, et al. (2023) The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 24(3):186-203 PMID:36097284
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang Y, et al. (2023) Upstream open reading frames mediate autophagy-related protein translation. Autophagy 19(2):457-473 PMID:35363116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin Z, et al. (2023) Bidirectional roles of the Ccr4-Not complex in regulating autophagy before and after nitrogen starvation. Autophagy 19(2):415-425 PMID:35167422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aring L, et al. (2022) A neurodegeneration gene, WDR45, links impaired ferritinophagy to iron accumulation. J Neurochem 160(3):356-375 PMID:34837396
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E, et al. (2022)
    • SGD Paper
  • González-Rodríguez P, et al. (2022) SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion. Cell Death Dis 13(11):953 PMID:36371383
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hawkins WD, et al. (2022) Dimerization-dependent membrane tethering by Atg23 is essential for yeast autophagy. Cell Rep 39(3):110702 PMID:35443167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lahiri V, et al. (2022) Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 18(7):1694-1714 PMID:34836487
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leary KA, et al. (2022) Atg23 is a vesicle-tethering protein. Autophagy 18(10):2510-2511 PMID:35867625
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lei Y, et al. (2022) How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 11(2) PMID:35204187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2022) The RB1CC1 Claw-binding motif: a new piece in the puzzle of autophagy regulation. Autophagy 18(2):237-239 PMID:35133947
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang F, et al. (2022) Follicular lymphoma-associated mutations in the V-ATPase chaperone VMA21 activate autophagy creating a targetable dependency. Autophagy 18(8):1982-2000 PMID:35287545
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu G and Klionsky DJ (2022) Life and Death Decisions-The Many Faces of Autophagy in Cell Survival and Cell Death. Biomolecules 12(7) PMID:35883421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Y, et al. (2021) Downregulation of autophagy by Met30-mediated Atg9 ubiquitination. Proc Natl Acad Sci U S A 118(1) PMID:33443148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gatica D, et al. (2021) Vac8 determines phagophore assembly site vacuolar localization during nitrogen starvation-induced autophagy. Autophagy 17(7):1636-1648 PMID:32508216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang YJ and Klionsky DJ (2021) Yeast mitophagy: Unanswered questions. Biochim Biophys Acta Gen Subj 1865(8):129932 PMID:34022298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Metur SP and Klionsky DJ (2021) Autophagy under construction: insights from in vitro reconstitution of autophagosome nucleation. Autophagy 17(2):383-384 PMID:33092448
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2021) Multiple structural rearrangements mediated by high-plasticity regions in Atg3 are key for efficient conjugation of Atg8 to PE during autophagy. Autophagy 17(8):1805-1808 PMID:34338142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H, et al. (2021) Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. J Mol Biol 433(5):166809 PMID:33484718
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Santos MMS, et al. (2021) Incomplete mitophagy in the mevalonate kinase-deficient Saccharomyces cerevisiae and its relation to the MKD-related autoinflammatory disease in humans. Biochim Biophys Acta Mol Basis Dis 1867(4):166053 PMID:33385519
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steinfeld N, et al. (2021) Elevating PI3P drives select downstream membrane trafficking pathways. Mol Biol Cell 32(2):143-156 PMID:33237833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gatica D, et al. (2020) The carboxy terminus of yeast Atg13 binds phospholipid membrane via motifs that overlap with the Vac8-interacting domain. Autophagy 16(6):1007-1020 PMID:31352862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shu WJ, et al. (2020) Old factors, new players: transcriptional regulation of autophagy. Autophagy 16(5):956-958 PMID:32054419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wen X, et al. (2020) The transcription factor Spt4-Spt5 complex regulates the expression of ATG8 and ATG41. Autophagy 16(7):1172-1185 PMID:31462158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang X, et al. (2020) TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy. J Cell Biol 219(3) PMID:32045480
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin Z and Klionsky DJ (2020) NPC-phagy: selective autophagy of the nuclear pore complexes. Autophagy 16(10):1735-1736 PMID:32713250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin Z, et al. (2020) The Roles of Ubiquitin in Mediating Autophagy. Cells 9(9) PMID:32887506
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng L, et al. (2020) The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy 16(8):1366-1379 PMID:31525119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E and Klionsky DJ (2019) On the edge of degradation: Autophagy regulation by RNA decay. Wiley Interdiscip Rev RNA 10(3):e1522 PMID:30560575
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gatica D, et al. (2019) The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy. Mol Cell 73(2):314-324.e4 PMID:30527663
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hartley S and Klionsky DJ (2019) Found art: the yeast vacuole. Autophagy 15(9):1638-1644 PMID:31305202
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lahiri V and Klionsky DJ (2019) Spatially distinct pools of TORC1 balance protein homeostasis. Autophagy 15(4):561-564 PMID:30696339
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu X, et al. (2019) Dhh1 promotes autophagy-related protein translation during nitrogen starvation. PLoS Biol 17(4):e3000219 PMID:30973873
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Memisoglu G, et al. (2019) PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proc Natl Acad Sci U S A 116(5):1613-1620 PMID:30655342
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parzych KR and Klionsky DJ (2019) Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 15(2):212-227 PMID:30422029
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang F, et al. (2019) Follicular lymphoma-associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. J Clin Invest 129(4):1626-1640 PMID:30720463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin Z, et al. (2019) Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Res 29(12):994-1008 PMID:31666677
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng Y, et al. (2019) A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade. Nat Commun 10(1):3600 PMID:31399562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bucci MD, et al. (2018) An Autophagy-Independent Role for ATG41 in Sulfur Metabolism During Zinc Deficiency. Genetics 208(3):1115-1130 PMID:29321173
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E and Klionsky DJ (2018) Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 293(15):5396-5403 PMID:29371397
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E, et al. (2018) The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy 14(5):898-912 PMID:29465287
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khoriaty R, et al. (2018) Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 115(33):E7748-E7757 PMID:30065114
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu X, et al. (2018) ER-mitochondria contacts are required for pexophagy in Saccharomyces cerevisiae. Contact (Thousand Oaks) 2 PMID:30859155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parzych KR, et al. (2018) A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 29(9):1089-1099 PMID:29514932
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H, et al. (2018) An atypical BAR domain protein in autophagy. Autophagy 14(7):1155-1156 PMID:29799763
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao Z, et al. (2018) MitoPho8Δ60 Assay as a Tool to Quantitatively Measure Mitophagy Activity. Methods Mol Biol 1759:85-93 PMID:28324486
    • SGD Paper
    • DOI full text
    • PubMed
  • Eapen VV, et al. (2017) A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 114(7):E1158-E1167 PMID:28154131
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Y and Klionsky DJ (2017) Receptors make the pathway choice for protein degradation. Autophagy 13(10):1617-1618 PMID:28796567
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin M, et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20(4):895-908 PMID:28746874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Levine B and Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker's yeast fuel advances in biomedical research. Proc Natl Acad Sci U S A 114(2):201-205 PMID:28039434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nanji T, et al. (2017) Conserved and unique features of the fission yeast core Atg1 complex. Autophagy 13(12):2018-2027 PMID:28976798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2017) The molecular mechanism of Atg13 function in autophagy induction: What is hidden behind the data? Autophagy 13(3):449-451 PMID:28118060
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H, et al. (2017) Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proc Natl Acad Sci U S A 114(47):E10112-E10121 PMID:29114050
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Y, et al. (2016) Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12(4):648-58 PMID:27050455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim M, et al. (2016) Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife 5 PMID:26812546
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu X and Klionsky DJ (2016) The Atg17-Atg31-Atg29 complex and Atg11 regulate autophagosome-vacuole fusion. Autophagy 12(5):894-5 PMID:26986547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu X, et al. (2016) The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion. Curr Biol 26(2):150-160 PMID:26774783
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wen X and Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428(9 Pt A):1681-99 PMID:26908221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao Z and Klionsky DJ (2016) An unconventional pathway for mitochondrial protein degradation. Autophagy 12(11):1971-1972 PMID:27686525
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ying ZX, et al. (2016) Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res 22(21):5383-5393 PMID:27267853
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Backues SK, et al. (2015) Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic 16(2):172-90 PMID:25385507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bernard A and Klionsky DJ (2015) Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy. Autophagy 11(4):718-9 PMID:25751780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bernard A, et al. (2015) Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol 25(5):546-55 PMID:25660547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bernard A, et al. (2015) A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 11(11):2114-2122 PMID:26649943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chew LH, et al. (2015) Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. Autophagy 11(6):891-905 PMID:25998554
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E and Klionsky DJ (2015) A missing piece of the puzzle: Atg11 functions as a scaffold to activate Atg1 for selective autophagy. Autophagy 11(12):2139-41 PMID:26566077
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delorme-Axford E, et al. (2015) The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75:3-12 PMID:25526918
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Y, et al. (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25(6):354-63 PMID:25759175
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guimaraes RS, et al. (2015) Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae. Methods 75:141-50 PMID:25484341
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu G, et al. (2015) TOR-dependent post-transcriptional regulation of autophagy. Autophagy 11(12):2390-2 PMID:26569496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hu G, et al. (2015) A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 17(7):930-942 PMID:26098573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2015) A few key points about figure presentation. Autophagy 11(1):1-8 PMID:25607738
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu X and Klionsky DJ (2015) TP53INP2/DOR protein chaperones deacetylated nuclear LC3 to the cytoplasm to promote macroautophagy. Autophagy 11(9):1441-2 PMID:26213321
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2015) One step closer to understanding mammalian macroautophagy initiation: Interplay of 2 HORMA architectures in the ULK1 complex. Autophagy 11(11):1953-1955 PMID:26325630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282(18):3474-88 PMID:26108642
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie Y, et al. (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11(1):28-45 PMID:25484070
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao Z, et al. (2015) Atg41/Icy2 regulates autophagosome formation. Autophagy 11(12):2288-99 PMID:26565778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • An Z, et al. (2014) Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy 10(10):1702-11 PMID:25126732
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Backues SK, et al. (2014) Estimating the size and number of autophagic bodies by electron microscopy. Autophagy 10(1):155-64 PMID:24270884
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng Y, et al. (2014) The machinery of macroautophagy. Cell Res 24(1):24-41 PMID:24366339
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin M and Klionsky DJ (2014) Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation. Autophagy 10(9):1681-2 PMID:25046109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin M and Klionsky DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588(15):2457-63 PMID:24928445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin M, et al. (2014) Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol 24(12):1314-1322 PMID:24881874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin N, et al. (2014) Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 25(7):1171-85 PMID:24478451
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2014) Citing recent declines in the discovery of new ATG genes, some scientists now suggest that the end of autophagy research may be within sight. Autophagy 10(5):715-6 PMID:24714412
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K, et al. (2014) The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 10(4):652-61 PMID:24451165
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller-Fleming L, et al. (2014) Detection of Saccharomyces cerevisiae Atg13 by western blot. Autophagy 10(3):514-7 PMID:24430166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ochaba J, et al. (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111(47):16889-94 PMID:25385587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orban DP and Klionsky DJ (2014) CUET-ting edge research. Autophagy 10(12):2097-8 PMID:25590262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Popelka H, et al. (2014) Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 10(6):1093-104 PMID:24879155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chew LH, et al. (2013) Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy 9(10):1467-74 PMID:23939028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deffieu M, et al. (2013) Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. J Cell Sci 126(Pt 2):415-26 PMID:23230142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaiser SE, et al. (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9(5):778-80 PMID:23388412
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2013) Why just eat in, when you can also eat out? Autophagy 9(2):119 PMID:23159909
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ and Codogno P (2013) The mechanism and physiological function of macroautophagy. J Innate Immun 5(5):427-33 PMID:23774579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K and Klionsky DJ (2013) Participation of mitochondrial fission during mitophagy. Cell Cycle 12(19):3131-2 PMID:24013417
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K and Klionsky DJ (2013) Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae. Autophagy 9(11):1900-1 PMID:24025250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K, et al. (2013) Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A 110(31):E2875-84 PMID:23858448
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K, et al. (2013) The role of Atg29 phosphorylation in PAS assembly. Autophagy 9(12):2178-9 PMID:24141181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K, et al. (2013) The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 26(1):9-18 PMID:23810512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reggiori F and Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194(2):341-61 PMID:23733851
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang K, et al. (2013) Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 9(11):1828-36 PMID:24025448
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Backues SK, et al. (2012) The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy 8(12):1835-6 PMID:22960621
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bartholomew CR, et al. (2012) Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci U S A 109(28):11206-10 PMID:22733735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Devenish RJ and Klionsky DJ (2012) Autophagy: mechanism and physiological relevance 'brewed' from yeast studies. Front Biosci (Schol Ed) 4(4):1354-63 PMID:22652877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaiser SE, et al. (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19(12):1242-9 PMID:23142976
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ, et al. (2012) In the beginning there was babble.. Autophagy 8(8):1165-7 PMID:22836666
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair U, et al. (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8(5):780-93 PMID:22622160
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takahashi R, et al. (2012) SNARE Dance: a musical interpretation of Atg9 transport to the tubulovesicular cluster. Autophagy 8(3):294-6 PMID:22361578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Umekawa M and Klionsky DJ (2012) Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem 287(20):16300-10 PMID:22447937
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang K, et al. (2012) Phosphatidylinositol 4-kinases are required for autophagic membrane trafficking. J Biol Chem 287(45):37964-72 PMID:22977244
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yen WL and Klionsky DJ (2012) Proteinase protection of prApe1 as a tool to monitor Cvt vesicle/autophagosome biogenesis. Autophagy 8(8):1245-9 PMID:22653261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu ZQ, et al. (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8(6):883-92 PMID:22652539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T, et al. (2011) Mitochondria autophagy in yeast. Antioxid Redox Signal 14(10):1989-2001 PMID:21194379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K and Klionsky DJ (2011) MAPKs regulate mitophagy in Saccharomyces cerevisiae. Autophagy 7(12):1564-5 PMID:22024747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao K, et al. (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193(4):755-67 PMID:21576396
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair U and Klionsky DJ (2011) Autophagosome biogenesis requires SNAREs. Autophagy 7(12):1570-2 PMID:22024744
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair U, et al. (2011) SNARE proteins are required for macroautophagy. Cell 146(2):290-302 PMID:21784249
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair U, et al. (2011) GFP-Atg8 protease protection as a tool to monitor autophagosome biogenesis. Autophagy 7(12):1546-50 PMID:22108003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thumm M and Klionsky DJ (2011) New thoughts regarding Atg8 and ubiquitination. Autophagy 7(2):125-6 PMID:21160277
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang K and Klionsky DJ (2011) Mitochondria removal by autophagy. Autophagy 7(3):297-300 PMID:21252623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yuga M, et al. (2011) Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286(15):13704-13 PMID:21343297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geng J and Klionsky DJ (2010) The Golgi as a potential membrane source for autophagy. Autophagy 6(7):950-1 PMID:20729630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geng J and Klionsky DJ (2010) Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 6(1):144-7 PMID:20131413
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geng J, et al. (2010) Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21(13):2257-69 PMID:20444978
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Inoue Y and Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21(7):664-70 PMID:20359542
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T and Klionsky DJ (2010) The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 75(4):795-800 PMID:20487284
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T, et al. (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6(2):278-80 PMID:20364111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lynch-Day MA and Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584(7):1359-66 PMID:20146925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lynch-Day MA, et al. (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci U S A 107(17):7811-6 PMID:20375281
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mari M, et al. (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005-22 PMID:20855505
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Munakata N and Klionsky DJ (2010) "Autophagy suite": Atg9 cycling in the cytoplasm to vacuole targeting pathway. Autophagy 6(6):679-85 PMID:20543572
    • SGD Paper
    • DOI full text
    • PubMed
  • Nair U, et al. (2010) Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285(15):11476-88 PMID:20154084
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thevissen K, et al. (2010) Skn1 and Ipt1 negatively regulate autophagy in Saccharomyces cerevisiae. FEMS Microbiol Lett 303(2):163-8 PMID:20030721
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Z, et al. (2010) Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell 38(2):250-64 PMID:20417603
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yen WL, et al. (2010) The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188(1):101-14 PMID:20065092
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cao Y, et al. (2009) A multiple ATG gene knockout strain for yeast two-hybrid analysis. Autophagy 5(5):699-705 PMID:19337029
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C and Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67-93 PMID:19653858
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C, et al. (2009) Double duty of Atg9 self-association in autophagosome biogenesis. Autophagy 5(3):385-7 PMID:19182520
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C, et al. (2009) Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5(4):520-6 PMID:19221467
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T and Klionsky DJ (2009) Atg32 is a tag for mitochondria degradation in yeast. Autophagy 5(8):1201-2 PMID:19736522
    • SGD Paper
    • DOI full text
    • PubMed
  • Kanki T, et al. (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20(22):4730-8 PMID:19793921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T, et al. (2009) Monitoring mitophagy in yeast: the Om45-GFP processing assay. Autophagy 5(8):1186-9 PMID:19806021
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T, et al. (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17(1):98-109 PMID:19619495
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2009) A report from the EMBO conference on autophagy. Autophagy 5(8):1235-9 PMID:19901526
    • SGD Paper
    • DOI full text
    • PubMed
  • Monastyrska I, et al. (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 84(3):431-48 PMID:19659885
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie Z, et al. (2009) Indirect estimation of the area density of Atg8 on the phagophore. Autophagy 5(2):217-20 PMID:19088501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Z and Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1-32 PMID:19802558
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yorimitsu T, et al. (2009) Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 5(5):616-24 PMID:19223769
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cao Y and Klionsky DJ (2008) New insights into autophagy using a multiple knockout strain. Autophagy 4(8):1073-5 PMID:18971623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cao Y, et al. (2008) In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J Cell Biol 182(4):703-13 PMID:18725539
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheong H and Klionsky DJ (2008) Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol 451:1-26 PMID:19185709
    • SGD Paper
    • DOI full text
    • PubMed
  • Cheong H and Klionsky DJ (2008) Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae. Autophagy 4(5):724-6 PMID:18552550
    • SGD Paper
    • DOI full text
    • PubMed
  • Cheong H, et al. (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19(2):668-81 PMID:18077553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geng J and Klionsky DJ (2008) Quantitative regulation of vesicle formation in yeast nonspecific autophagy. Autophagy 4(7):955-7 PMID:18758231
    • SGD Paper
    • DOI full text
    • PubMed
  • Geng J, et al. (2008) Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol 182(1):129-40 PMID:18625846
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C, et al. (2008) Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19(12):5506-16 PMID:18829864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kanki T and Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283(47):32386-93 PMID:18818209
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151-75 PMID:18188003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monastyrska I, et al. (2008) Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19(5):1962-75 PMID:18287533
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monastyrska I, et al. (2008) Harpooning the Cvt complex to the phagophore assembly site. Autophagy 4(7):914-6 PMID:18708760
    • SGD Paper
    • DOI full text
    • PubMed
  • Noda T and Klionsky DJ (2008) The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol 451:33-42 PMID:19185711
    • SGD Paper
    • DOI full text
    • PubMed
  • Xie Z, et al. (2008) Dissecting autophagosome formation: the missing pieces. Autophagy 4(7):920-2 PMID:18719358
    • SGD Paper
    • DOI full text
    • PubMed
  • Xie Z, et al. (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19(8):3290-8 PMID:18508918
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Cao Y and Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17(10):839-49 PMID:17893711
    • SGD Paper
    • DOI full text
    • PubMed
  • Cao Y and Klionsky DJ (2007) Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy 3(1):17-20 PMID:17012830
    • SGD Paper
    • DOI full text
    • PubMed
  • He C and Klionsky DJ (2007) Atg9 trafficking in autophagy-related pathways. Autophagy 3(3):271-4 PMID:17329962
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang J, et al. (2007) The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol Biol Cell 18(7):2511-24 PMID:17475771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2007) The importance of diversity. Autophagy 3(2):83-4 PMID:17204843
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ (2007) Monitoring autophagy in yeast: the Pho8Delta60 assay. Methods Mol Biol 390:363-71 PMID:17951700
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ, et al. (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3(3):181-206 PMID:17224625
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ, et al. (2007) How shall I eat thee? Autophagy 3(5):413-6 PMID:17568180
    • SGD Paper
    • DOI full text
    • PubMed
  • Legakis JE, et al. (2007) A cycling protein complex required for selective autophagy. Autophagy 3(5):422-32 PMID:17426440
    • SGD Paper
    • DOI full text
    • PubMed
  • Mijaljica D, et al. (2007) Autophagy and vacuole homeostasis: a case for self-degradation? Autophagy 3(5):417-21 PMID:17534141
    • SGD Paper
    • DOI full text
    • PubMed
  • Tal R, et al. (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282(8):5617-24 PMID:17166847
    • SGD Paper
    • DOI full text
    • PubMed
  • Xie Z and Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102-9 PMID:17909521
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang Z and Klionsky DJ (2007) Permeases recycle amino acids resulting from autophagy. Autophagy 3(2):149-50 PMID:17204852
    • SGD Paper
    • DOI full text
    • PubMed
  • Yen WL and Klionsky DJ (2007) Atg27 is a second transmembrane cycling protein. Autophagy 3(3):254-6 PMID:17297289
    • SGD Paper
    • DOI full text
    • PubMed
  • Yen WL, et al. (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18(2):581-93 PMID:17135291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yorimitsu T and Klionsky DJ (2007) Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3(2):160-2 PMID:17204854
    • SGD Paper
    • DOI full text
    • PubMed
  • Yorimitsu T, et al. (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18(10):4180-9 PMID:17699586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C, et al. (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175(6):925-35 PMID:17178909
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monastyrska I, et al. (2006) Atg11 directs autophagosome cargoes to the PAS along actin cables. Autophagy 2(2):119-21 PMID:16874092
    • SGD Paper
    • DOI full text
    • PubMed
  • Reggiori F and Klionsky DJ (2006) Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae. J Cell Sci 119(Pt 14):2903-11 PMID:16787937
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang Z, et al. (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12):5094-104 PMID:17021250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yorimitsu T, et al. (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299-304 PMID:16901900
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheong H, et al. (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16(7):3438-53 PMID:15901835
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ (2005) The correct way to monitor autophagy in higher eukaryotes. Autophagy 1(2):65 PMID:16874029
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7-18 PMID:15615779
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nair U and Klionsky DJ (2005) Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 280(51):41785-8 PMID:16230342
    • SGD Paper
    • DOI full text
    • PubMed
  • Nazarko TY, et al. (2005) Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1(1):37-45 PMID:16874038
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reggiori F, et al. (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1(2):101-9 PMID:16874040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reggiori F, et al. (2005) The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16(12):5843-56 PMID:16221887
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yorimitsu T and Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2(Suppl 2):1542-52 PMID:16247502
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yorimitsu T and Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16(4):1593-605 PMID:15659643
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Budovskaya YV, et al. (2004) The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279(20):20663-71 PMID:15016820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reggiori F, et al. (2004) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15(5):2189-204 PMID:15004240
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reggiori F, et al. (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6(1):79-90 PMID:14723849
    • SGD Paper
    • DOI full text
    • PubMed
  • Shintani T and Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990-5 PMID:15528435
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shintani T and Klionsky DJ (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279(29):29889-94 PMID:15138258
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strømhaug PE, et al. (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15(8):3553-66 PMID:15155809
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abeliovich H, et al. (2003) Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14(2):477-90 PMID:12589048
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ, et al. (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5(4):539-45 PMID:14536056
    • SGD Paper
    • DOI full text
    • PubMed
  • Reggiori F, et al. (2003) Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J Biol Chem 278(7):5009-20 PMID:12446664
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tucker KA, et al. (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278(48):48445-52 PMID:14504273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang CW and Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3-4):65-76 PMID:12865942
    • SGD Paper
    • PMC full text
    • PubMed
  • Wang CW, et al. (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5):973-85 PMID:14662743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang WP and Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27(6):409-20 PMID:12576634
    • SGD Paper
    • DOI full text
    • PubMed
  • Khalfan WA and Klionsky DJ (2002) Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14(4):468-75 PMID:12383798
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim J, et al. (2002) Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277(1):763-73 PMID:11675395
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nice DC, et al. (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277(33):30198-207 PMID:12048214
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shintani T, et al. (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3(6):825-37 PMID:12479808
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang CW, et al. (2002) The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 277(49):47917-27 PMID:12364329
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abeliovich H and Klionsky DJ (2001) Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev 65(3):463-79, table of contents PMID:11528006
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Guan J, et al. (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12(12):3821-38 PMID:11739783
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hutchins MU and Klionsky DJ (2001) Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J Biol Chem 276(23):20491-8 PMID:11264288
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim J, et al. (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152(1):51-64 PMID:11149920
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim J, et al. (2001) Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 153(2):381-96 PMID:11309418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scott SV, et al. (2001) Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 7(6):1131-41 PMID:11430817
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stromhaug PE and Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2(8):524-31 PMID:11489210
    • SGD Paper
    • DOI full text
    • PubMed
  • Teter SA, et al. (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276(3):2083-7 PMID:11085977
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang CW, et al. (2001) Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276(32):30442-51 PMID:11382760
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abeliovich H, et al. (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151(5):1025-34 PMID:11086004
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • George MD, et al. (2000) Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell 11(3):969-82 PMID:10712513
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang WP, et al. (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275(8):5845-51 PMID:10681575
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim J and Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303-42 PMID:10966461
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ and Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717-21 PMID:11099404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Noda T, et al. (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3):465-80 PMID:10662773
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scott SV, et al. (2000) Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275(33):25840-9 PMID:10837477
    • SGD Paper
    • DOI full text
    • PubMed
  • Teter SA and Klionsky DJ (2000) Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation. Semin Cell Dev Biol 11(3):173-9 PMID:10906274
    • SGD Paper
    • DOI full text
    • PubMed
  • Hutchins MU, et al. (1999) Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112 ( Pt 22):4079-87 PMID:10547367
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim J, et al. (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10(5):1337-51 PMID:10233148
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teter SA and Klionsky DJ (1999) How to get a folded protein across a membrane. Trends Cell Biol 9(11):428-31 PMID:10511706
    • SGD Paper
    • DOI full text
    • PubMed
  • Fleckenstein D, et al. (1998) Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane. J Cell Sci 111 ( Pt 20):3109-18 PMID:9739084
    • SGD Paper
    • DOI full text
    • PubMed
  • Klionsky DJ (1998) Nonclassical protein sorting to the yeast vacuole. J Biol Chem 273(18):10807-10 PMID:9556549
    • SGD Paper
    • DOI full text
    • PubMed
  • Mizushima N, et al. (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395-8 PMID:9759731
    • SGD Paper
    • DOI full text
    • PubMed
  • Scott SV and Klionsky DJ (1998) Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr Opin Cell Biol 10(4):523-9 PMID:9719874
    • SGD Paper
    • DOI full text
    • PubMed
  • Baba M, et al. (1997) Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 139(7):1687-95 PMID:9412464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim J, et al. (1997) Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J Cell Biol 137(3):609-18 PMID:9151668
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matoba S, et al. (1997) Dipeptidyl aminopeptidase processing and biosynthesis of alkaline extracellular protease from Yarrowia lipolytica. Microbiology (Reading) 143 ( Pt 10):3263-3272 PMID:9353927
    • SGD Paper
    • DOI full text
    • PubMed
  • Scott SV, et al. (1997) Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol 138(1):37-44 PMID:9214379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tomashek JJ, et al. (1997) Reconstitution in vitro of the V1 complex from the yeast vacuolar proton-translocating ATPase. Assembly recapitulates mechanism. J Biol Chem 272(26):16618-23 PMID:9195975
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomashek JJ, et al. (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272(42):26787-93 PMID:9334266
    • SGD Paper
    • DOI full text
    • PubMed
  • Alizadeh P and Klionsky DJ (1996) Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Lett 391(3):273-8 PMID:8764988
    • SGD Paper
    • DOI full text
    • PubMed
  • Harding TM, et al. (1996) Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem 271(30):17621-4 PMID:8663607
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim J, et al. (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol 62(5):1563-9 PMID:8633854
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oda MN, et al. (1996) Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J Cell Biol 132(6):999-1010 PMID:8601598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scott SV, et al. (1996) Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci U S A 93(22):12304-8 PMID:8901576
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tomashek JJ, et al. (1996) Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem 271(17):10397-404 PMID:8626613
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang YX, et al. (1996) Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol Biol Cell 7(9):1375-89 PMID:8885233
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Destruelle M, et al. (1995) Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 11(11):1015-25 PMID:7502577
    • SGD Paper
    • DOI full text
    • PubMed
  • Harding TM, et al. (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131(3):591-602 PMID:7593182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scott SV and Klionsky DJ (1995) In vitro reconstitution of cytoplasm to vacuole protein targeting in yeast. J Cell Biol 131(6 Pt 2):1727-35 PMID:8557740
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Destruelle M, et al. (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14(4):2740-54 PMID:8139573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morano KA and Klionsky DJ (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107 ( Pt 10):2813-24 PMID:7876349
    • SGD Paper
    • DOI full text
    • PubMed
  • Yaver DS, et al. (1993) Vacuolar ATPase mutants accumulate precursor proteins in a pre-vacuolar compartment. J Biol Chem 268(14):10564-72 PMID:8486710
    • SGD Paper
    • PubMed
  • Klionsky DJ, et al. (1992) Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J Biol Chem 267(5):3416-22 PMID:1531340
    • SGD Paper
    • PubMed
  • Klionsky DJ, et al. (1992) Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol 119(2):287-99 PMID:1400574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ and Emr SD (1990) A new class of lysosomal/vacuolar protein sorting signals. J Biol Chem 265(10):5349-52 PMID:2180925
    • SGD Paper
    • PubMed
  • Klionsky DJ, et al. (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54(3):266-92 PMID:2215422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ and Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8(8):2241-50 PMID:2676517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Banta LM, et al. (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107(4):1369-83 PMID:3049619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klionsky DJ, et al. (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8(5):2105-16 PMID:3290649
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Robinson JS, et al. (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936-48 PMID:3062374
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bedwell DM, et al. (1987) The yeast F1-ATPase beta subunit precursor contains functionally redundant mitochondrial protein import information. Mol Cell Biol 7(11):4038-47 PMID:2893254
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top