Popelka H and Klionsky DJ (2025) The emerging significance of Vac8, a multi-purpose armadillo-repeat protein in yeast. Autophagy 21(5):913-916 PMID:39045779
Lei Y, et al. (2024) Big1 is a newly identified autophagy regulator that is critical for a fully functional V-ATPase. Mol Biol Cell 35(11):br20 PMID:39259764
Thaprawat P, et al. (2024) TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in Toxoplasma gondii. Autophagy Rep 3(1) PMID:39600488
Antoniuk-Majchrzak J, et al. (2023) Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. Biochim Biophys Acta Mol Cell Res 1870(7):119526 PMID:37364618
Delorme-Axford E, et al. (2023) The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Autophagy 19(10):2719-2732 PMID:37345792
Fukuda T, et al. (2023) The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol Cell 83(12):2045-2058.e9 PMID:37192628
Lei Y and Klionsky DJ (2023) Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 30(6):1416-1429 PMID:37045910
Popelka H and Klionsky DJ (2023) Autophagic structures revealed by cryo-electron tomography: new clues about autophagosome biogenesis. Autophagy 19(5):1375-1377 PMID:36722820
Popelka H, et al. (2023) The Intrinsically Disordered N Terminus in Atg12 from Yeast Is Necessary for the Functional Structure of the Protein. Int J Mol Sci 24(20) PMID:37894717
Yin Z, et al. (2023) Bidirectional roles of the Ccr4-Not complex in regulating autophagy before and after nitrogen starvation. Autophagy 19(2):415-425 PMID:35167422
González-Rodríguez P, et al. (2022) SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion. Cell Death Dis 13(11):953 PMID:36371383
Lahiri V, et al. (2022) Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 18(7):1694-1714 PMID:34836487
Lei Y, et al. (2022) How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 11(2) PMID:35204187
Popelka H and Klionsky DJ (2022) The RB1CC1 Claw-binding motif: a new piece in the puzzle of autophagy regulation. Autophagy 18(2):237-239 PMID:35133947
Wang F, et al. (2022) Follicular lymphoma-associated mutations in the V-ATPase chaperone VMA21 activate autophagy creating a targetable dependency. Autophagy 18(8):1982-2000 PMID:35287545
Metur SP and Klionsky DJ (2021) Autophagy under construction: insights from in vitro reconstitution of autophagosome nucleation. Autophagy 17(2):383-384 PMID:33092448
Popelka H and Klionsky DJ (2021) Multiple structural rearrangements mediated by high-plasticity regions in Atg3 are key for efficient conjugation of Atg8 to PE during autophagy. Autophagy 17(8):1805-1808 PMID:34338142
Popelka H, et al. (2021) Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. J Mol Biol 433(5):166809 PMID:33484718
Santos MMS, et al. (2021) Incomplete mitophagy in the mevalonate kinase-deficient Saccharomyces cerevisiae and its relation to the MKD-related autoinflammatory disease in humans. Biochim Biophys Acta Mol Basis Dis 1867(4):166053 PMID:33385519
Gatica D, et al. (2020) The carboxy terminus of yeast Atg13 binds phospholipid membrane via motifs that overlap with the Vac8-interacting domain. Autophagy 16(6):1007-1020 PMID:31352862
Yang X, et al. (2020) TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy. J Cell Biol 219(3) PMID:32045480
Zheng L, et al. (2020) The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy 16(8):1366-1379 PMID:31525119
Memisoglu G, et al. (2019) PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proc Natl Acad Sci U S A 116(5):1613-1620 PMID:30655342
Zheng Y, et al. (2019) A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade. Nat Commun 10(1):3600 PMID:31399562
Delorme-Axford E and Klionsky DJ (2018) Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 293(15):5396-5403 PMID:29371397
Delorme-Axford E, et al. (2018) The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy 14(5):898-912 PMID:29465287
Khoriaty R, et al. (2018) Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 115(33):E7748-E7757 PMID:30065114
Parzych KR, et al. (2018) A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 29(9):1089-1099 PMID:29514932
Eapen VV, et al. (2017) A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 114(7):E1158-E1167 PMID:28154131
Levine B and Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker's yeast fuel advances in biomedical research. Proc Natl Acad Sci U S A 114(2):201-205 PMID:28039434
Popelka H and Klionsky DJ (2017) The molecular mechanism of Atg13 function in autophagy induction: What is hidden behind the data? Autophagy 13(3):449-451 PMID:28118060
Popelka H, et al. (2017) Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proc Natl Acad Sci U S A 114(47):E10112-E10121 PMID:29114050
Feng Y, et al. (2016) Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12(4):648-58 PMID:27050455
Liu X, et al. (2016) The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion. Curr Biol 26(2):150-160 PMID:26774783
Bernard A and Klionsky DJ (2015) Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy. Autophagy 11(4):718-9 PMID:25751780
Bernard A, et al. (2015) Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol 25(5):546-55 PMID:25660547
Bernard A, et al. (2015) A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 11(11):2114-2122 PMID:26649943
Chew LH, et al. (2015) Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. Autophagy 11(6):891-905 PMID:25998554
Delorme-Axford E and Klionsky DJ (2015) A missing piece of the puzzle: Atg11 functions as a scaffold to activate Atg1 for selective autophagy. Autophagy 11(12):2139-41 PMID:26566077
Delorme-Axford E, et al. (2015) The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 75:3-12 PMID:25526918
Feng Y, et al. (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25(6):354-63 PMID:25759175
Guimaraes RS, et al. (2015) Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae. Methods 75:141-50 PMID:25484341
Hu G, et al. (2015) A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 17(7):930-942 PMID:26098573
Liu X and Klionsky DJ (2015) TP53INP2/DOR protein chaperones deacetylated nuclear LC3 to the cytoplasm to promote macroautophagy. Autophagy 11(9):1441-2 PMID:26213321
Popelka H and Klionsky DJ (2015) One step closer to understanding mammalian macroautophagy initiation: Interplay of 2 HORMA architectures in the ULK1 complex. Autophagy 11(11):1953-1955 PMID:26325630
Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282(18):3474-88 PMID:26108642
An Z, et al. (2014) Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy 10(10):1702-11 PMID:25126732
Jin M and Klionsky DJ (2014) Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation. Autophagy 10(9):1681-2 PMID:25046109
Klionsky DJ (2014) Citing recent declines in the discovery of new ATG genes, some scientists now suggest that the end of autophagy research may be within sight. Autophagy 10(5):715-6 PMID:24714412
Ochaba J, et al. (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111(47):16889-94 PMID:25385587
Popelka H, et al. (2014) Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 10(6):1093-104 PMID:24879155
Deffieu M, et al. (2013) Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. J Cell Sci 126(Pt 2):415-26 PMID:23230142
Kaiser SE, et al. (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9(5):778-80 PMID:23388412
Mao K, et al. (2013) Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci U S A 110(31):E2875-84 PMID:23858448
Mao K, et al. (2013) The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 26(1):9-18 PMID:23810512
Wang K, et al. (2013) Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 9(11):1828-36 PMID:24025448
Bartholomew CR, et al. (2012) Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci U S A 109(28):11206-10 PMID:22733735
Devenish RJ and Klionsky DJ (2012) Autophagy: mechanism and physiological relevance 'brewed' from yeast studies. Front Biosci (Schol Ed) 4(4):1354-63 PMID:22652877
Kaiser SE, et al. (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19(12):1242-9 PMID:23142976
Umekawa M and Klionsky DJ (2012) Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J Biol Chem 287(20):16300-10 PMID:22447937
Yen WL and Klionsky DJ (2012) Proteinase protection of prApe1 as a tool to monitor Cvt vesicle/autophagosome biogenesis. Autophagy 8(8):1245-9 PMID:22653261
Yuga M, et al. (2011) Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286(15):13704-13 PMID:21343297
Geng J and Klionsky DJ (2010) Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 6(1):144-7 PMID:20131413
Lynch-Day MA, et al. (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci U S A 107(17):7811-6 PMID:20375281
Mari M, et al. (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005-22 PMID:20855505
Nair U, et al. (2010) Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285(15):11476-88 PMID:20154084
Yang Z, et al. (2010) Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell 38(2):250-64 PMID:20417603
Yen WL, et al. (2010) The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188(1):101-14 PMID:20065092
Yorimitsu T, et al. (2009) Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 5(5):616-24 PMID:19223769
Cheong H and Klionsky DJ (2008) Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae. Autophagy 4(5):724-6 PMID:18552550
Cheong H, et al. (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19(2):668-81 PMID:18077553
Geng J, et al. (2008) Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol 182(1):129-40 PMID:18625846
He C, et al. (2008) Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19(12):5506-16 PMID:18829864
Klionsky DJ, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151-75 PMID:18188003
Tal R, et al. (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282(8):5617-24 PMID:17166847
Yorimitsu T, et al. (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18(10):4180-9 PMID:17699586
He C, et al. (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175(6):925-35 PMID:17178909
Reggiori F and Klionsky DJ (2006) Atg9 sorting from mitochondria is impaired in early secretion and VFT-complex mutants in Saccharomyces cerevisiae. J Cell Sci 119(Pt 14):2903-11 PMID:16787937
Yang Z, et al. (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12):5094-104 PMID:17021250
Nair U and Klionsky DJ (2005) Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 280(51):41785-8 PMID:16230342
Nazarko TY, et al. (2005) Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1(1):37-45 PMID:16874038
Reggiori F, et al. (2005) The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16(12):5843-56 PMID:16221887
Yorimitsu T and Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16(4):1593-605 PMID:15659643
Budovskaya YV, et al. (2004) The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279(20):20663-71 PMID:15016820
Reggiori F, et al. (2004) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15(5):2189-204 PMID:15004240
Reggiori F, et al. (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6(1):79-90 PMID:14723849
Shintani T and Klionsky DJ (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279(29):29889-94 PMID:15138258
Strømhaug PE, et al. (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15(8):3553-66 PMID:15155809
Abeliovich H, et al. (2003) Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14(2):477-90 PMID:12589048
Reggiori F, et al. (2003) Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J Biol Chem 278(7):5009-20 PMID:12446664
Tucker KA, et al. (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278(48):48445-52 PMID:14504273
Wang CW, et al. (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5):973-85 PMID:14662743
Khalfan WA and Klionsky DJ (2002) Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14(4):468-75 PMID:12383798
Kim J, et al. (2002) Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277(1):763-73 PMID:11675395
Nice DC, et al. (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277(33):30198-207 PMID:12048214
Wang CW, et al. (2002) The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 277(49):47917-27 PMID:12364329
Abeliovich H and Klionsky DJ (2001) Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev 65(3):463-79, table of contents PMID:11528006
Guan J, et al. (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12(12):3821-38 PMID:11739783
Hutchins MU and Klionsky DJ (2001) Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J Biol Chem 276(23):20491-8 PMID:11264288
Kim J, et al. (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152(1):51-64 PMID:11149920
Teter SA, et al. (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276(3):2083-7 PMID:11085977
Wang CW, et al. (2001) Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276(32):30442-51 PMID:11382760
Abeliovich H, et al. (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151(5):1025-34 PMID:11086004
George MD, et al. (2000) Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell 11(3):969-82 PMID:10712513
Huang WP, et al. (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275(8):5845-51 PMID:10681575
Kim J and Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303-42 PMID:10966461
Noda T, et al. (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3):465-80 PMID:10662773
Scott SV, et al. (2000) Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275(33):25840-9 PMID:10837477
Teter SA and Klionsky DJ (2000) Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation. Semin Cell Dev Biol 11(3):173-9 PMID:10906274
Hutchins MU, et al. (1999) Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112 ( Pt 22):4079-87 PMID:10547367
Kim J, et al. (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10(5):1337-51 PMID:10233148
Fleckenstein D, et al. (1998) Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane. J Cell Sci 111 ( Pt 20):3109-18 PMID:9739084
Kim J, et al. (1997) Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J Cell Biol 137(3):609-18 PMID:9151668
Tomashek JJ, et al. (1997) Reconstitution in vitro of the V1 complex from the yeast vacuolar proton-translocating ATPase. Assembly recapitulates mechanism. J Biol Chem 272(26):16618-23 PMID:9195975
Alizadeh P and Klionsky DJ (1996) Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Lett 391(3):273-8 PMID:8764988
Harding TM, et al. (1996) Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem 271(30):17621-4 PMID:8663607
Kim J, et al. (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol 62(5):1563-9 PMID:8633854
Scott SV, et al. (1996) Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci U S A 93(22):12304-8 PMID:8901576
Tomashek JJ, et al. (1996) Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem 271(17):10397-404 PMID:8626613
Wang YX, et al. (1996) Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol Biol Cell 7(9):1375-89 PMID:8885233
Destruelle M, et al. (1995) Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 11(11):1015-25 PMID:7502577
Harding TM, et al. (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131(3):591-602 PMID:7593182
Scott SV and Klionsky DJ (1995) In vitro reconstitution of cytoplasm to vacuole protein targeting in yeast. J Cell Biol 131(6 Pt 2):1727-35 PMID:8557740
Destruelle M, et al. (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14(4):2740-54 PMID:8139573
Morano KA and Klionsky DJ (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107 ( Pt 10):2813-24 PMID:7876349
Klionsky DJ, et al. (1992) Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J Biol Chem 267(5):3416-22 PMID:1531340
Klionsky DJ, et al. (1992) Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol 119(2):287-99 PMID:1400574
Klionsky DJ and Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8(8):2241-50 PMID:2676517
Banta LM, et al. (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107(4):1369-83 PMID:3049619
Robinson JS, et al. (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936-48 PMID:3062374