AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Estruch F
  • References

Author: Estruch F


References 39 references


No citations for this author.

Download References (.nbib)

  • Sánchez-Adriá IE, et al. (2025) Sterol-Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory-Competent Clones of the Industrial Yeast Saccharomyces cerevisiae. Microb Biotechnol 18(1):e70092 PMID:39853591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sánchez-Adriá IE, et al. (2023) Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol Res 277:127487 PMID:37713908
    • SGD Paper
    • DOI full text
    • PubMed
  • Sánchez-Adriá IE, et al. (2022) Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. J Fungi (Basel) 8(2) PMID:35205847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prieto JA, et al. (2020) Pho85 and PI(4,5)P2 regulate different lipid metabolic pathways in response to cold. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158557 PMID:31678512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Randez-Gil F, et al. (2020) The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae. Microb Biotechnol 13(2):562-571 PMID:31743950
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Randez-Gil F, et al. (2020) Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Front Cell Dev Biol 8:592159 PMID:33282871
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Randez-Gil F, et al. (2020) Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb Biotechnol 13(4):1066-1081 PMID:32212314
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez-Navarro N, et al. (2017) Iwr1 facilitates RNA polymerase II dynamics during transcription elongation. Biochim Biophys Acta Gene Regul Mech 1860(7):803-811 PMID:28258010
    • SGD Paper
    • DOI full text
    • PubMed
  • Gómez-Navarro N, et al. (2016) Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast. BMC Genomics 17:183 PMID:26939779
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez-Navarro N and Estruch F (2015) Different pathways for the nuclear import of yeast RNA polymerase II. Biochim Biophys Acta 1849(11):1354-62 PMID:26455955
    • SGD Paper
    • DOI full text
    • PubMed
  • Gómez-Navarro N, et al. (2013) Rtp1p is a karyopherin-like protein required for RNA polymerase II biogenesis. Mol Cell Biol 33(9):1756-67 PMID:23438601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F, et al. (2012) Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors. BMC Genet 13:80 PMID:22963203
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F, et al. (2009) A genetic screen in Saccharomyces cerevisiae identifies new genes that interact with mex67-5, a temperature-sensitive allele of the gene encoding the mRNA export receptor. Mol Genet Genomics 281(1):125-34 PMID:19034519
    • SGD Paper
    • DOI full text
    • PubMed
  • Peiró-Chova L and Estruch F (2009) The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes. J Biol Chem 284(42):28958-67 PMID:19679657
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peiró-Chova L and Estruch F (2007) Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae. Genetics 176(1):125-38 PMID:17339209
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F, et al. (2005) Physical and genetic interactions link the yeast protein Zds1p with mRNA nuclear export. J Biol Chem 280(10):9691-7 PMID:15619606
    • SGD Paper
    • DOI full text
    • PubMed
  • Estruch F and Cole CN (2003) An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol Biol Cell 14(4):1664-76 PMID:12686617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F and Prieto JA (2003) Construction of a Trp- commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes. FEMS Yeast Res 4(3):329-38 PMID:14654438
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayordomo I, et al. (2002) Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem 277(38):35650-6 PMID:12093809
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodriguez-Vargas S, et al. (2002) Gene expression analysis of cold and freeze stress in Baker's yeast. Appl Environ Microbiol 68(6):3024-30 PMID:12039763
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Amorós M and Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol Microbiol 39(6):1523-32 PMID:11260469
    • SGD Paper
    • DOI full text
    • PubMed
  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24(4):469-86 PMID:10978547
    • SGD Paper
    • DOI full text
    • PubMed
  • Garreau H, et al. (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology (Reading) 146 ( Pt 9):2113-2120 PMID:10974099
    • SGD Paper
    • DOI full text
    • PubMed
  • Alepuz PM, et al. (1999) The Saccharomyces cerevisiae RanGTP-binding protein msn5p is involved in different signal transduction pathways. Genetics 153(3):1219-31 PMID:10545454
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodríguez-Navarro S, et al. (1999) Functional analysis of 12 ORFs from Saccharomyces cerevisiae chromosome II. Yeast 15(10B):913-9 PMID:10407271
    • SGD Paper
    • DOI full text
    • PubMed
  • de Alteriis E, et al. (1999) Clues to the origin of high external invertase activity in immobilized growing yeast: prolonged SUC2 transcription and less susceptibility of the enzyme to endogenous proteolysis. Can J Microbiol 45(5):413-7 PMID:10446717
    • SGD Paper
    • DOI full text
    • PubMed
  • Görner W, et al. (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12(4):586-97 PMID:9472026
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alepuz PM, et al. (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26(1):91-8 PMID:9383192
    • SGD Paper
    • DOI full text
    • PubMed
  • Martínez-Pastor MT and Estruch F (1996) Sudden depletion of carbon source blocks translation, but not transcription, in the yeast Saccharomyces cerevisiae. FEBS Lett 390(3):319-22 PMID:8706886
    • SGD Paper
    • DOI full text
    • PubMed
  • Martínez-Pastor MT, et al. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15(9):2227-35 PMID:8641288
    • SGD Paper
    • PMC full text
    • PubMed
  • Estruch F and Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13(7):3872-81 PMID:8321194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F, et al. (1992) N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132(3):639-50 PMID:1468623
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F (1991) The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein. Nucleic Acids Res 19(18):4873-7 PMID:1923755
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F and Carlson M (1990) Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res 18(23):6959-64 PMID:2263457
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Estruch F and Carlson M (1990) SNF6 encodes a nuclear protein that is required for expression of many genes in Saccharomyces cerevisiae. Mol Cell Biol 10(6):2544-53 PMID:2188093
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martínez-García JF, et al. (1989) Chromatin structure of the 5' flanking region of the yeast LEU2 gene. Mol Gen Genet 217(2-3):464-70 PMID:10215493
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (1987) Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15(17):6937-56 PMID:2821486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Ortin JE, et al. (1986) DNase I sensitivity of the chromatin of the yeast SUC2 gene for invertase. Mol Gen Genet 205(3):422-7 PMID:3550382
    • SGD Paper
    • DOI full text
    • PubMed
  • Pérez-Ortín JE, et al. (1986) Sliding-end-labelling. A method to avoid artifacts in nucleosome positioning. FEBS Lett 208(1):31-3 PMID:3021537
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top