AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Engelberg D
  • References

Author: Engelberg D


References 36 references


No citations for this author.

Download References (.nbib)

  • Baskin A, et al. (2025) All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 301(6):108509 PMID:40222547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engelberg D, et al. (2025) The Saccharomyces cerevisiae ∑1278b strain is sensitive to NaCl because of mutations in its ENA1 gene. FEMS Yeast Res 25 PMID:40317084
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bai C, et al. (2020) Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 15(8):e0237540 PMID:32804965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chua SCJH, et al. (2019) Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 12(4) PMID:31575020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goshen-Lago T, et al. (2017) Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk. Methods Mol Biol 1487:65-88 PMID:27924559
    • SGD Paper
    • DOI full text
    • PubMed
  • Goshen-Lago T, et al. (2016) Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 27(17):2771-83 PMID:27413009
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tesker M, et al. (2016) Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Biosci Rep 36(2) PMID:26987986
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bai C, et al. (2015) The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell 26(12):2357-74 PMID:25904326
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engelberg D, et al. (2014) Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 26(12):2865-78 PMID:25218923
    • SGD Paper
    • DOI full text
    • PubMed
  • Avrahami-Moyal L, et al. (2012) Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 12(5):521-33 PMID:22443114
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Avrahami-Moyal L, et al. (2012) Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant. FEMS Yeast Res 12(4):447-55 PMID:22380741
    • SGD Paper
    • DOI full text
    • PubMed
  • Maayan I, et al. (2012) Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α. PLoS One 7(9):e44749 PMID:22984552
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grably M and Engelberg D (2010) A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae. Methods Mol Biol 638:211-24 PMID:20238272
    • SGD Paper
    • DOI full text
    • PubMed
  • Levin-Salomon V, et al. (2010) A "molecular evolution" approach for isolation of intrinsically active (MEK-independent) MAP kinases. Methods Mol Biol 661:257-72 PMID:20811988
    • SGD Paper
    • DOI full text
    • PubMed
  • Levin-Salomon V, et al. (2009) When expressed in yeast, mammalian mitogen-activated protein kinases lose proper regulation and become spontaneously phosphorylated. Biochem J 417(1):331-40 PMID:18778243
    • SGD Paper
    • DOI full text
    • PubMed
  • Maayan I and Engelberg D (2009) The yeast MAPK Hog1 is not essential for immediate survival under osmostress. FEBS Lett 583(12):2015-20 PMID:19447106
    • SGD Paper
    • DOI full text
    • PubMed
  • Levin-Salomon V, et al. (2008) Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases. J Biol Chem 283(50):34500-10 PMID:18829462
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cohen R and Engelberg D (2007) Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol Lett 273(2):239-43 PMID:17573937
    • SGD Paper
    • DOI full text
    • PubMed
  • Engelberg D and Livnah O (2006) Isolation of intrinsically active mutants of MAP kinases via genetic screens in yeast. Methods 40(3):255-61 PMID:16938468
    • SGD Paper
    • DOI full text
    • PubMed
  • Diskin R, et al. (2004) Active mutants of the human p38alpha mitogen-activated protein kinase. J Biol Chem 279(45):47040-9 PMID:15284239
    • SGD Paper
    • DOI full text
    • PubMed
  • Bell M and Engelberg D (2003) Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity. J Biol Chem 278(17):14603-6 PMID:12637550
    • SGD Paper
    • DOI full text
    • PubMed
  • Yaakov G, et al. (2003) Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 23(14):4826-40 PMID:12832470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grably MR, et al. (2002) HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 44(1):21-35 PMID:11967066
    • SGD Paper
    • DOI full text
    • PubMed
  • Bell M, et al. (2001) Isolation of hyperactive mutants of the MAPK p38/Hog1 that are independent of MAPK kinase activation. J Biol Chem 276(27):25351-8 PMID:11309396
    • SGD Paper
    • DOI full text
    • PubMed
  • Marbach I, et al. (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276(20):16944-51 PMID:11350978
    • SGD Paper
    • DOI full text
    • PubMed
  • Scherz R, et al. (2001) Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol 183(18):5402-13 PMID:11514526
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mimran A, et al. (2000) GCN4-based expression system (pGES): translationally regulated yeast expression vectors. Biotechniques 28(3):552-4, 556, 558-60 PMID:10723570
    • SGD Paper
    • DOI full text
    • PubMed
  • Stanhill A, et al. (1999) The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19(11):7529-38 PMID:10523641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zimmermann S, et al. (1999) UV-responsive genes of arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 274(24):17017-24 PMID:10358052
    • SGD Paper
    • DOI full text
    • PubMed
  • Engelberg D, et al. (1998) Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol 180(15):3992-6 PMID:9683500
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engelberg D, et al. (1994) The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 14(7):4929-37 PMID:8007989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engelberg D, et al. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77(3):381-90 PMID:8181058
    • SGD Paper
    • DOI full text
    • PubMed
  • Gross E, et al. (1992) Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein. Mol Cell Biol 12(6):2653-61 PMID:1588963
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Segal M, et al. (1992) Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras. J Biol Chem 267(32):22747-51 PMID:1429624
    • SGD Paper
    • PubMed
  • Engelberg D, et al. (1990) In vitro reconstitution of cdc25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J 9(3):641-51 PMID:2155776
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engelberg D, et al. (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signal 1(1):1-7 PMID:2561938
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top