Baskin A, et al. (2025) All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 301(6):108509 PMID:40222547
Engelberg D, et al. (2025) The Saccharomyces cerevisiae ∑1278b strain is sensitive to NaCl because of mutations in its ENA1 gene. FEMS Yeast Res 25 PMID:40317084
Bai C, et al. (2020) Hog1-induced transcription of RTC3 and HSP12 is robust and occurs in cells lacking Msn2, Msn4, Hot1 and Sko1. PLoS One 15(8):e0237540 PMID:32804965
Goshen-Lago T, et al. (2017) Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk. Methods Mol Biol 1487:65-88 PMID:27924559
Goshen-Lago T, et al. (2016) Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 27(17):2771-83 PMID:27413009
Tesker M, et al. (2016) Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Biosci Rep 36(2) PMID:26987986
Bai C, et al. (2015) The yeast Hot1 transcription factor is critical for activating a single target gene, STL1. Mol Biol Cell 26(12):2357-74 PMID:25904326
Engelberg D, et al. (2014) Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 26(12):2865-78 PMID:25218923
Avrahami-Moyal L, et al. (2012) Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 12(5):521-33 PMID:22443114
Avrahami-Moyal L, et al. (2012) Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant. FEMS Yeast Res 12(4):447-55 PMID:22380741
Maayan I, et al. (2012) Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α. PLoS One 7(9):e44749 PMID:22984552
Grably M and Engelberg D (2010) A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae. Methods Mol Biol 638:211-24 PMID:20238272
Levin-Salomon V, et al. (2010) A "molecular evolution" approach for isolation of intrinsically active (MEK-independent) MAP kinases. Methods Mol Biol 661:257-72 PMID:20811988
Levin-Salomon V, et al. (2009) When expressed in yeast, mammalian mitogen-activated protein kinases lose proper regulation and become spontaneously phosphorylated. Biochem J 417(1):331-40 PMID:18778243
Levin-Salomon V, et al. (2008) Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases. J Biol Chem 283(50):34500-10 PMID:18829462
Cohen R and Engelberg D (2007) Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol Lett 273(2):239-43 PMID:17573937
Engelberg D and Livnah O (2006) Isolation of intrinsically active mutants of MAP kinases via genetic screens in yeast. Methods 40(3):255-61 PMID:16938468
Bell M and Engelberg D (2003) Phosphorylation of Tyr-176 of the yeast MAPK Hog1/p38 is not vital for Hog1 biological activity. J Biol Chem 278(17):14603-6 PMID:12637550
Yaakov G, et al. (2003) Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 23(14):4826-40 PMID:12832470
Bell M, et al. (2001) Isolation of hyperactive mutants of the MAPK p38/Hog1 that are independent of MAPK kinase activation. J Biol Chem 276(27):25351-8 PMID:11309396
Marbach I, et al. (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276(20):16944-51 PMID:11350978
Stanhill A, et al. (1999) The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19(11):7529-38 PMID:10523641
Zimmermann S, et al. (1999) UV-responsive genes of arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 274(24):17017-24 PMID:10358052
Engelberg D, et al. (1994) The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 14(7):4929-37 PMID:8007989
Engelberg D, et al. (1994) The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77(3):381-90 PMID:8181058
Gross E, et al. (1992) Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein. Mol Cell Biol 12(6):2653-61 PMID:1588963
Segal M, et al. (1992) Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras. J Biol Chem 267(32):22747-51 PMID:1429624
Engelberg D, et al. (1990) In vitro reconstitution of cdc25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J 9(3):641-51 PMID:2155776