Reference: Tesker M, et al. (2016) Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Biosci Rep 36(2)

Reference Help

Abstract


Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed 'hydrophobic core'. A similar element exists in the Hog1's mammalian orthologues p38s. Here we show that the 'hydrophobic core' is a loose suppressor of Hog1's autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the 'hydrophobic core' of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tesker M, Selamat SE, Beenstock J, Hayouka R, Livnah O, Engelberg D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference