AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Chernoff YO
  • References

Author: Chernoff YO


References 81 references


No citations for this author.

Download References (.nbib)

  • Grizel AV, et al. (2024) Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 300(10):107766 PMID:39276934
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fang S, et al. (2023) Profiling and verifying the substrates of E3 ubiquitin ligase Rsp5 in yeast cells. STAR Protoc 4(3):102489 PMID:37561636
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jay-Garcia LM, et al. (2023) Yeast Chaperone Hsp70-Ssb Modulates a Variety of Protein-Based Heritable Elements. Int J Mol Sci 24(10) PMID:37240005
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kachkin DV, et al. (2023) The Aβ42 Peptide and IAPP Physically Interact in a Yeast-Based Assay. Int J Mol Sci 24(18) PMID:37762425
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seto EP, et al. (2022) Heat inactivation of stable proteinaceous particles for future sample return mission architecture. Front Microbiol 13:911091 PMID:36016789
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Y, et al. (2021) Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer. Cell Chem Biol 28(9):1283-1297.e8 PMID:33667410
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (2020) Application of yeast to studying amyloid and prion diseases. Adv Genet 105:293-380 PMID:32560789
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2020) Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 21(14) PMID:32708832
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2019) Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 24(18) PMID:31540362
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Howie RL, et al. (2019) Role of the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a Saccharomyces cerevisiae Prion by Heat Shock. Genetics 212(3):757-771 PMID:31142614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chandramowlishwaran P, et al. (2018) Mammalian amyloidogenic proteins promote prion nucleation in yeast. J Biol Chem 293(9):3436-3450 PMID:29330303
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matveenko AG, et al. (2018) Differential effects of chaperones on yeast prions: CURrent view. Curr Genet 64(2):317-325 PMID:28932898
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharma A, et al. (2018) Modulation of the Formation of Aβ- and Sup35NM-Based Amyloids by Complex Interplay of Specific and Nonspecific Ion Effects. J Phys Chem B 122(19):4972-4981 PMID:29668283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barbitoff YA, et al. (2017) To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol 105(2):242-257 PMID:28431189
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernova TA, et al. (2017) Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harb Perspect Biol 9(2) PMID:27815300
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2017) Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress. Cell Rep 18(3):751-761 PMID:28099852
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2017) Prion-based memory of heat stress in yeast. Prion 11(3):151-161 PMID:28521568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Okamoto A, et al. (2017) Proteolysis suppresses spontaneous prion generation in yeast. J Biol Chem 292(49):20113-20124 PMID:29038292
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO and Kiktev DA (2016) Dual role of ribosome-associated chaperones in prion formation and propagation. Curr Genet 62(4):677-685 PMID:26968706
    • SGD Paper
    • DOI full text
    • PubMed
  • Grizel AV, et al. (2016) Strain conformation controls the specificity of cross-species prion transmission in the yeast model. Prion 10(4):269-82 PMID:27565563
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma A, et al. (2016) Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier. J Biol Chem 291(3):1277-88 PMID:26565023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shcherbik N, et al. (2016) Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Res 44(14):6840-52 PMID:27325745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiktev DA, et al. (2015) Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Mol Microbiol 96(3):621-32 PMID:25649498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zaarur N, et al. (2015) RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO J 34(18):2363-82 PMID:26303906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ali M, et al. (2014) Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 289(40):27625-39 PMID:25143386
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernova TA, et al. (2014) Physiological and environmental control of yeast prions. FEMS Microbiol Rev 38(2):326-44 PMID:24236638
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sattlegger E, et al. (2014) Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton. IUBMB Life 66(8):538-45 PMID:25138357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rubin J, et al. (2013) Ion-specific effects on prion nucleation and strain formation. J Biol Chem 288(42):30300-30308 PMID:23990463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gong H, et al. (2012) Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast. PLoS Genet 8(4):e1002634 PMID:22536159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiktev DA, et al. (2012) Regulation of chaperone effects on a yeast prion by cochaperone Sgt2. Mol Cell Biol 32(24):4960-70 PMID:23045389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liebman SW and Chernoff YO (2012) Prions in yeast. Genetics 191(4):1041-72 PMID:22879407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bruce KL and Chernoff YO (2011) Sequence specificity and fidelity of prion transmission in yeast. Semin Cell Dev Biol 22(5):444-51 PMID:21439395
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernova TA, et al. (2011) Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 43(2):242-52 PMID:21777813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiktev DA, et al. (2011) Identification of genes influencing synthetic lethality of genetic and epigenetic alterations in translation termination factors in yeast. Dokl Biochem Biophys 438:117-9 PMID:21725886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Newnam GP, et al. (2011) Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 408(3):432-48 PMID:21392508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen B, et al. (2010) Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 76(6):1483-99 PMID:20444092
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goehler H, et al. (2010) Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. PLoS One 5(3):e9642 PMID:20224794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yeh V, et al. (2010) The Hofmeister effect on amyloid formation using yeast prion protein. Protein Sci 19(1):47-56 PMID:19890987
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Romanova NV and Chernoff YO (2009) Hsp104 and prion propagation. Protein Pept Lett 16(6):598-605 PMID:19519517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang Y, et al. (2009) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23(2):451-63 PMID:18854435
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO (2008) Prion: disease or relief? Nat Cell Biol 10(9):1019-21 PMID:18758490
    • SGD Paper
    • DOI full text
    • PubMed
  • Allen KD, et al. (2007) Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J Biol Chem 282(5):3004-13 PMID:17142456
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen B, et al. (2007) Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proc Natl Acad Sci U S A 104(8):2791-6 PMID:17296932
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO (2007) Stress and prions: lessons from the yeast model. FEBS Lett 581(19):3695-701 PMID:17509571
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meriin AB, et al. (2007) Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB J 21(8):1915-25 PMID:17341688
    • SGD Paper
    • DOI full text
    • PubMed
  • Rikhvanov EG, et al. (2007) Chaperone effects on prion and nonprion aggregates. Prion 1(4):217-22 PMID:19164915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borchsenius AS, et al. (2006) Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr Genet 49(1):21-9 PMID:16307272
    • SGD Paper
    • DOI full text
    • PubMed
  • Ganusova EE, et al. (2006) Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol 26(2):617-29 PMID:16382152
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Allen KD, et al. (2005) Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169(3):1227-42 PMID:15545639
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gokhale KC, et al. (2005) Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model. J Biol Chem 280(24):22809-18 PMID:15824100
    • SGD Paper
    • DOI full text
    • PubMed
  • Ono B, et al. (2005) The Saccharomyces cerevisiae ESU1 gene, which is responsible for enhancement of termination suppression, corresponds to the 3'-terminal half of GAL11. Yeast 22(11):895-906 PMID:16134092
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernoff YO (2004) Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition? Curr Opin Chem Biol 8(6):665-71 PMID:15556413
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernova TA, et al. (2003) Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J Biol Chem 278(52):52102-15 PMID:14559899
    • SGD Paper
    • DOI full text
    • PubMed
  • Meriin AB, et al. (2003) Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23(21):7554-65 PMID:14560003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meriin AB, et al. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 157(6):997-1004 PMID:12058016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borchsenius AS, et al. (2001) Yeast prion protein derivative defective in aggregate shearing and production of new 'seeds'. EMBO J 20(23):6683-91 PMID:11726504
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488(1):39-64 PMID:11223404
    • SGD Paper
    • DOI full text
    • PubMed
  • Jensen MA, et al. (2001) Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae. Genetics 159(2):527-35 PMID:11606530
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kulikov VV, et al. (2001) Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the LYS2 gene of yeast Saccharomyces cerevisiae. Mutat Res 473(2):151-61 PMID:11166033
    • SGD Paper
    • DOI full text
    • PubMed
  • Velichutina IV, et al. (2001) Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol 305(4):715-27 PMID:11162087
    • SGD Paper
    • DOI full text
    • PubMed
  • Wegrzyn RD, et al. (2001) Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 21(14):4656-69 PMID:11416143
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bailleul-Winslett PA, et al. (2000) An antiprion effect of the anticytoskeletal drug latrunculin A in yeast. Gene Expr 9(3):145-56 PMID:11243411
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35(4):865-76 PMID:10692163
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailleul PA, et al. (1999) Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 153(1):81-94 PMID:10471702
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burck CL, et al. (1999) Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift. RNA 5(11):1451-7 PMID:10580473
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19(12):8103-12 PMID:10567536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Newnam GP, et al. (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19(2):1325-33 PMID:9891066
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147(2):507-19 PMID:9335589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (1996) The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc Natl Acad Sci U S A 93(6):2517-22 PMID:8637906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Derkatch IL, et al. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144(4):1375-86 PMID:8978027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chernoff YO, et al. (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880-4 PMID:7754373
    • SGD Paper
    • DOI full text
    • PubMed
  • Lindquist S, et al. (1995) The role of Hsp104 in stress tolerance and [PSI+] propagation in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 60:451-60 PMID:8824419
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernoff YO, et al. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24(3):268-70 PMID:8221937
    • SGD Paper
    • DOI full text
    • PubMed
  • Hiep TT, et al. (1993) The 5-aminoimidazole ribonucleotide-carboxylase structural gene of the methylotrophic yeast Pichia methanolica: cloning, sequencing and homology analysis. Yeast 9(11):1251-8 PMID:8109174
    • SGD Paper
    • DOI full text
    • PubMed
  • Ter-Avanesyan MD, et al. (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7(5):683-92 PMID:8469113
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernoff YO, et al. (1992) Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae. Yeast 8(7):489-99 PMID:1523883
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernoff YO, et al. (1992) Conservative system for dosage-dependent modulation of translational fidelity in eukaryotes. Biochimie 74(5):455-61 PMID:1637871
    • SGD Paper
    • DOI full text
    • PubMed
  • Ono B, et al. (1991) Interactions between chromosomal omnipotent suppressors and extrachromosomal effectors in Saccharomyces cerevisiae. Curr Genet 19(4):243-8 PMID:1868573
    • SGD Paper
    • DOI full text
    • PubMed
  • Kushnirov VV, et al. (1990) Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae. Yeast 6(6):461-72 PMID:2080663
    • SGD Paper
    • DOI full text
    • PubMed
  • Gordenin DA, et al. (1988) Precise excision of bacterial transposon Tn5 in yeast. Mol Gen Genet 213(2-3):388-93 PMID:2847007
    • SGD Paper
    • DOI full text
    • PubMed
  • Chernoff YO, et al. (1984) Mitotic intragenic recombination in the yeast Saccharomyces: marker-effects on conversion and reciprocity of recombination. Curr Genet 9(1):31-7 PMID:24173507
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top