AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Boguta M
  • References

Author: Boguta M


References 56 references


No citations for this author.

Download References (.nbib)

  • Łopusińska A, et al. (2025) RNA polymerase III transcription machinery and tRNA processing are regulated by the ubiquitin ligase Rsp5. Biochim Biophys Acta Mol Cell Res 1872(6):119993 PMID:40398754
    • SGD Paper
    • DOI full text
    • PubMed
  • Boguta M (2022) Assembly of RNA polymerase III complex involves a putative co-translational mechanism. Gene 824:146394 PMID:35278633
    • SGD Paper
    • DOI full text
    • PubMed
  • Rudzińska I, et al. (2022) Rbs1 protein, involved in RNA polymerase III complex assembly in the yeast Saccharomyces cerevisiae, induces a Gcn4 response and forms aggregates when overproduced. Gene 809:146034 PMID:34688816
    • SGD Paper
    • DOI full text
    • PubMed
  • Rudzińska I, et al. (2021) Reprogramming mRNA Expression in Response to Defect in RNA Polymerase III Assembly in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 22(14) PMID:34298922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Turowski TW and Boguta M (2021) Specific Features of RNA Polymerases I and III: Structure and Assembly. Front Mol Biosci 8:680090 PMID:34055890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cieśla M, et al. (2020) The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Res 48(21):12252-12268 PMID:33231687
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jurkiewicz A, et al. (2019) Inhibition of tRNA Gene Transcription by the Immunosuppressant Mycophenolic Acid. Mol Cell Biol 40(1) PMID:31658995
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leśniewska E, et al. (2019) Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. Biochim Biophys Acta Gene Regul Mech 1862(1):25-34 PMID:30342998
    • SGD Paper
    • DOI full text
    • PubMed
  • Płonka M, et al. (2019) Coupling of RNA polymerase III assembly to cell cycle progression in Saccharomyces cerevisiae. Cell Cycle 18(4):500-510 PMID:30760101
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ciesla M, et al. (2018) Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription. Nucleic Acids Res 46(18):9444-9455 PMID:30053100
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graczyk D, et al. (2018) Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. Biochim Biophys Acta Gene Regul Mech 1861(4):320-329 PMID:29378333
    • SGD Paper
    • DOI full text
    • PubMed
  • Foretek D, et al. (2017) Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3' end of tRNA precursors. Gene 612:12-18 PMID:27575455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Foretek D, et al. (2016) Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA 22(3):339-49 PMID:26729922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Turowski TW, et al. (2016) Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res 26(7):933-44 PMID:27206856
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cieśla M, et al. (2015) Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 35(7):1169-81 PMID:25605335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cieśla M, et al. (2014) Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. Biochim Biophys Acta 1843(6):1103-10 PMID:24576411
    • SGD Paper
    • DOI full text
    • PubMed
  • Boguta M (2013) Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim Biophys Acta 1829(3-4):376-84 PMID:23201230
    • SGD Paper
    • DOI full text
    • PubMed
  • Morawiec E, et al. (2013) Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Gene 526(1):16-22 PMID:23657116
    • SGD Paper
    • DOI full text
    • PubMed
  • Wichtowska D, et al. (2013) An interplay between transcription, processing, and degradation determines tRNA levels in yeast. Wiley Interdiscip Rev RNA 4(6):709-22 PMID:24039171
    • SGD Paper
    • DOI full text
    • PubMed
  • Turowski TW, et al. (2012) Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway. RNA 18(10):1823-32 PMID:22919049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boguta M and Graczyk D (2011) RNA polymerase III under control: repression and de-repression. Trends Biochem Sci 36(9):451-6 PMID:21816617
    • SGD Paper
    • DOI full text
    • PubMed
  • Graczyk D, et al. (2011) Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc Natl Acad Sci U S A 108(12):4926-31 PMID:21383183
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Karkusiewicz I, et al. (2011) Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing. J Biol Chem 286(45):39478-88 PMID:21940626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gajda A, et al. (2010) Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1. J Biol Chem 285(46):35719-27 PMID:20817737
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sikora J, et al. (2009) Yeast prion [PSI+] lowers the levels of mitochondrial prohibitins. Biochim Biophys Acta 1793(11):1703-9 PMID:19695293
    • SGD Paper
    • DOI full text
    • PubMed
  • Cieśla M and Boguta M (2008) Regulation of RNA polymerase III transcription by Maf1 protein. Acta Biochim Pol 55(2):215-25 PMID:18560610
    • SGD Paper
    • PubMed
  • Kutner J, et al. (2008) Mitochondrial release factor in yeast: interplay of functional domains. Curr Genet 53(3):185-92 PMID:18224323
    • SGD Paper
    • DOI full text
    • PubMed
  • Towpik J, et al. (2008) Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1. J Biol Chem 283(25):17168-74 PMID:18445601
    • SGD Paper
    • DOI full text
    • PubMed
  • Cieśla M, et al. (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27(21):7693-702 PMID:17785443
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oficjalska-Pham D, et al. (2006) General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol Cell 22(5):623-32 PMID:16762835
    • SGD Paper
    • DOI full text
    • PubMed
  • Claisse ML, et al. (2005) Translational readthrough of a termination codon in the yeast mitochondrial mRNA VAR1 as a result of mutation in the release factor mRF1. Acta Biochim Pol 52(1):129-37 PMID:15827612
    • SGD Paper
    • DOI full text
    • PubMed
  • Kamińska J, et al. (2005) Rsp5 ubiquitin ligase affects isoprenoid pathway and cell wall organization in S. cerevisiae. Acta Biochim Pol 52(1):207-20 PMID:15827618
    • SGD Paper
    • DOI full text
    • PubMed
  • Towpik J, et al. (2005) Expression of mitochondrial release factor in relation to respiratory competence in yeast. Curr Genet 48(2):101-8 PMID:16021449
    • SGD Paper
    • DOI full text
    • PubMed
  • Towpik J, et al. (2004) Mutations in the yeast mrf1 gene encoding mitochondrial release factor inhibit translation on mitochondrial ribosomes. J Biol Chem 279(14):14096-103 PMID:14734569
    • SGD Paper
    • DOI full text
    • PubMed
  • Jakubiec M and Boguta M (2002) [Prion (PSI) and its effect on termination of translation in Saccharomyces cerevisiae]. Postepy Biochem 48(3):175-81 PMID:12625245
    • SGD Paper
    • PubMed
  • Kamińska J, et al. (2002) The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res 2(1):31-7 PMID:12702319
    • SGD Paper
    • DOI full text
    • PubMed
  • Kwapisz M, et al. (2002) Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-delta mutant of Saccharomyces cerevisiae. Curr Genet 42(3):147-52 PMID:12491008
    • SGD Paper
    • DOI full text
    • PubMed
  • Chacinska A, et al. (2001) Ssb1 chaperone is a [PSI+] prion-curing factor. Curr Genet 39(2):62-7 PMID:11405097
    • SGD Paper
    • DOI full text
    • PubMed
  • Pluta K, et al. (2001) Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 21(15):5031-40 PMID:11438659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boguta M (2000) [Prions in yeast and filamentous fungi]. Postepy Biochem 46(2):108-14 PMID:11058996
    • SGD Paper
    • PubMed
  • Chacinska A, et al. (2000) Prion-dependent switching between respiratory competence and deficiency in the yeast nam9-1 mutant. Mol Cell Biol 20(19):7220-9 PMID:10982839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chacińska A and Boguta M (2000) Coupling of mitochondrial translation with the formation of respiratory complexes in yeast mitochondria. Acta Biochim Pol 47(4):973-91 PMID:11996120
    • SGD Paper
    • PubMed
  • Konopińska A and Boguta M (2000) [Interrelationship between mitochondrial and cytoplasmic translation in the Saccharomyces cerevisiae yeast]. Postepy Biochem 46(4):299-308 PMID:11449964
    • SGD Paper
    • PubMed
  • Kushnirov VV, et al. (2000) Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr Biol 10(22):1443-6 PMID:11102806
    • SGD Paper
    • DOI full text
    • PubMed
  • Boguta M, et al. (1997) Expression of the yeast NAM9 gene coding for mitochondrial ribosomal protein. Acta Biochim Pol 44(2):251-8 PMID:9360714
    • SGD Paper
    • PubMed
  • Boguta M, et al. (1997) Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 185(2):291-6 PMID:9055829
    • SGD Paper
    • DOI full text
    • PubMed
  • Zoladek T, et al. (1997) MDP1, a Saccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase gene RSP5. Genetics 145(3):595-603 PMID:9055070
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dmochowska A, et al. (1995) The NAM9-1 suppressor mutation in a nuclear gene encoding ribosomal mitochondrial protein of Saccharomyces cerevisiae. Gene 162(1):81-5 PMID:7557422
    • SGD Paper
    • DOI full text
    • PubMed
  • Konopinska A, et al. (1995) Nucleotide sequence of the GDS1 gene of Saccharomyces cerevisiae. Yeast 11(15):1513-8 PMID:8750239
    • SGD Paper
    • DOI full text
    • PubMed
  • Zoladek T, et al. (1995) Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Mol Cell Biol 15(12):6884-94 PMID:8524255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boguta M, et al. (1994) Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol. Mol Cell Biol 14(4):2298-306 PMID:8139535
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murawski M, et al. (1994) maf1 mutation alters the subcellular localization of the Mod5 protein in yeast. Acta Biochim Pol 41(4):441-8 PMID:7732762
    • SGD Paper
    • PubMed
  • Boguta M, et al. (1992) NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 12(1):402-12 PMID:1729612
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boguta M, et al. (1988) Nuclear omnipotent suppressors of premature termination codons in mitochondrial genes affect the 37S mitoribosomal subunit. Curr Genet 13(2):129-35 PMID:3286020
    • SGD Paper
    • DOI full text
    • PubMed
  • Zagórski W, et al. (1987) Phenotypic suppression and nuclear accommodation of the mit- oxi1-V25 mutation in isolated yeast mitochondria. Curr Genet 12(5):305-10 PMID:3328651
    • SGD Paper
    • DOI full text
    • PubMed
  • Boguta M, et al. (1986) Nuclear suppressors of the mitochondrial mutation oxi1-V25 in Saccharomyces cerevisiae. Genetic analysis of the suppressors: absence of complementation between non-allelic mutants. J Gen Microbiol 132(8):2087-97 PMID:3540195
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top