Reference: Rep M, et al. (1999) Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (Reading) 145 ( Pt 3):715-727

Reference Help

Abstract


Yeast cells respond to a shift to higher osmolarity by increasing the cellular content of the osmolyte glycerol. This response is accompanied by a stimulation of the expression of genes encoding enzymes in the glycerol production pathway. In this study the osmotic induction of one of those genes, GPD1, which encodes glycerol-3-phosphate dehydrogenase, was monitored in time course experiments. The response is independent of the osmolyte and consists of four apparent phases: a lag phase, an initial induction phase, a feedback phase and a sustained long-term induction. Osmotic shock with progressively higher osmolyte concentrations caused a prolonged lag phase. Deletion of HOG1, which encodes the terminal protein kinase of the high osmolarity glycerol (HOG) response pathway, led to an even longer lag phase and drastically lower basal and induced GPD1 mRNA levels. However, the induction was only moderately diminished. Overstimulation of Hog1p by deletion of the genes for the protein phosphatases PTP2 and PTP3 led to higher basal and induced mRNA levels and a shorter lag phase. The protein phosphatase calcineurin, which mediates salt-induced expression of some genes, does not appear to contribute to the control of GPD1 expression. Although GPD1 expression has so far not been reported to be controlled by a general stress response mechanism, heat-shock induction of the GPD1 mRNA level was observed. However, unregulated protein kinase A activity, which strongly affects the general stress response, only marginally altered the mRNA level of GPD1. The osmotic stimulation of GPD1 expression does not seem to be mediated by derepression, since deletion of the SSN6 gene, which encodes a general repressor, did not significantly alter the induction profile. A hypoosmotic shock led to a transient 10-fold drop of the GPD1 mRNA level. Neither the HOG nor the protein kinase C pathway, which is stimulated by a decrease in external osmolarity, is involved in this effect. It was concluded that osmotic regulation of GPD1 expression is the result of an interplay between different signalling pathways, some of which remain to be identified.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rep M, Albertyn J, Thevelein JM, Prior BA, Hohmann S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference