New & Noteworthy

Something from Nothing: A New, Structured Protein from Noncoding DNA

November 01, 2017


In the Rick and Morty episode Mortynight Run, a gaseous life form pulls off what alchemists had been trying to do for centuries. It literally creates gold out of thin air!

GaseousGold

Like this gaseous being converting oxygen into gold, Saccharomyces cerevisiae has converted noncoding DNA into a protein with at least some secondary structure. (Reddit)

Our ever faithful friend, Saccharomyces cerevisiae can’t do that (at least not yet). But what it has done is create a protein, Bsc4p, out of noncoding intergenic DNA. And while not gold, it is a fully functioning protein.

In a new study, Bungard and coworkers show that this recently evolved gene, BSC4, encodes a protein that can fold into at least a partially defined structure. This matters as there was some debate about whether newly generated proteins could attain a defined structure or if they would remain as intrinsically disordered proteins (IDPs). A reasonable debate, given how rare structure is among amino acid sequences and how plentiful IDPs are in a cell.

Bsc4p is a great protein to study in this regard as there is very strong evidence that it has evolved relatively recently in S. cerevisiae, but not in other closely related species. And it definitely does work in a S. cerevisiae cell. While not essential, some genetic studies (including this one) indicate that it plays an important role in DNA damage repair pathways.

Here is an example from S. paradoxus of the noncoding sequence that the S .cerevisiae BSC4 gene almost certainly sprang from:

gtg TCT GTA ATT CTA CGG AAA AGT AAA CAA AAA AAC TGT AAT TGC ATA ACG AGC AAT TTA TAT ACA ATA CAC ATA GAA AGA CTT TCG CTC tga TGT CCG AAC TGC CAT TGT CAT TGG AGA AAA TCC TTA TGT GGA GTG GAG TTC CCT GCA GGT TAT TTT CAG AGA AAA CGT GGT TAC AAA AAG GGA CCA GAT TCG CCC tag CTT ACA ACT CGC TTG AAT CAT CTT TAT GCC AGA CCT TTC AAC GCC GCG ACC CCA AAA ACA taa ATG CTG AGT CAC CAT GGT GCT GGG CGC TGT CGC TGT CGC GCT GTT CCT TTC CGA GAA AAG CAC GGC AAC AAC AAC AAC AGT CCA TAT GAC CAA AAA AAA AAT AAC CGC AAA TGG CAG tga AAT GCA ATT ATC ATT GTA TAC GA?

In order for this sequence to become a gene coding a protein, at a minimum the first lowercase, dark orange codon needs to be mutated to ATG, a start codon, and the rest of the lowercase, dark orange codons need to be mutated away from being stop codons.

This seems to be part of what happened in S. cerevisiae:

ATG TCT ATT GTG CTA CGG AAG AGT AAC AAA AAA AAC AAA AAC TGC ATA ACA AGC AAG TTT TAT ACA ATA CAC ATT ATA AAA ATT TCT ACT CCG GTG TTC CGA GCT CCC ATT GCC ATT GGA GAA AGC CCT TAT GTG GAG TGG AGC TGC CTA CAG GTT GTT TTC AGG AAA GAC ATG GTT ACA AAA AAG ACG ACA TTC GCC CAA CTT ATC ACT CGC TTG AAC CAC TTT TTA TGC CAA GCC CTT AAA CGC CGC GAC TCA AAA ACA TAC ATA CTG TGC CGC ACG GCA GTT TTT GGC GCT ATG ACA CCC TTT TCC CCA AGA AAA TCG CAT ATT AAC AAC AAA TTA CCC ATG CAA CCC AGG AAA AAA AAA ATA GTC ATT ATA TAC GTA GTG CGC TTT CAT TGA

Through a few small changes, we now have a 131 amino acid polypeptide where before we had some noncoding DNA between LYP1 and ALP1.

Bungard and coworkers use a variety of techniques to show that this newly evolved protein has structure. Not as much structure as many proteins that have been around longer, but more than many of those IDPs.

PhilStone

It is as if Saccharomyces cerevisiae has found the philosopher’s stone but instead of changing lead to gold, it turns noncoding DNA into a gene that codes for a partially structured protein. (Wikimedia Commons)

Consistent with protein structure, Bsc4p forms compact oligomers under native conditions that are partially resistant to proteolysis, has a far UV circular dichroism (CD) spectra consistent with beta sheets, has a buried tryptophan, Trp47, that becomes solvent accessible under denaturing conditions, as measured by tryptophan fluorescence, and has a near UV spectra consistent with a hydrophobic core. However, they found no evidence of any significant interactions between the secondary structures to form a single three dimensional shape, in the protein.  In other words, no evidence of a tertiary structure.

And that wasn’t the only sign that Bsc4p wasn’t a mature, fully structured protein. For example, that near UV CD that showed a hydrophobic core, was weak in intensity, which is consistent with at least “partially molten character.” And Bsc4p bound certain dyes: Congo red, Thioflavin T, and ANS, in a way consistent with some molten globule and/or amyloid character.

So we have a bit of a mixed bag with Bsc4p. One way to think about it is as a young protein still developing its ultimate three dimensional structure. Or, it could be that for the job it does, this is all the structure it needs.

In any event, it is definitely a newly evolved protein with at least some structure which shows that this can indeed happen. Sometimes Mother Nature can make structured proteins from noncoding DNA. Like that gaseous being on Rick and Morty, producing gold out of thin air.

by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Department of Genetics

Categories: Research Spotlight

Tags: noncoding DNA , protein structure , BSC4 , newly evolved gene

A Lot Hinges on Ndc80

December 04, 2014


The ability to fold tent poles can help you get to beautiful places, but the ability to fold the Ndc80 complex is essential to life.
Image by Maria Ly

A collapsible protein complex makes sure that dividing cells get the right number of chromosomes:

The invention of collapsible tent poles was a boon to backpackers everywhere. These long, rigid poles provide strong support for a tent, but when it’s time to pack up and go, they fold up into a short package. The secret? Flexible regions in between the rigid sections.

Although the inventors of these poles couldn’t have known it, something similar already existed in nature. In a new paper in GENETICS, Tien and colleagues used the awesome power of yeast genetics, along with some cool biochemistry, to look at the shape of the S. cerevisiae Ndc80 complex in vivo. They found that, just like a tent pole, it bends sharply at a flexible region to fold two rigid sections next to each other. And this ability to fold is critical for accurate chromosome segregation.

During cell division, chromosomes must be correctly attached to the mitotic spindle so that the mother and daughter cells each get one, and only one, copy of each. If a yeast cell doesn’t get this process right, it can become sick or even die. And if it happens in an animal cell, it can lead to cancer.

The Ndc80 complex is shaped something like a dumbbell.

The Ndc80 complex, which is conserved from yeast to humans, is an integral part of this process because it connects the chromosomes to the spindle during mitosis. It consists of four subunits and has an elongated middle and globular parts on each end, sort of like a dumbbell. The Ndc80 protein, one of the subunits, has an unstructured  “loop” region in the middle of its elongated section.

Previous work had shown that the loop region of Ndc80 is flexible in vitro, and in vivo experiments had shown that the whole complex can change its conformation. Tien and colleagues wanted to know whether the Ndc80 loop region was important for the shape of the complex during mitosis, and whether flexibility in this region was important for function.

They started with a genetic approach, and isolated mutations in NDC80 that caused heat sensitivity. One particular allele, ndc80-121, was especially interesting. The mutant protein had two amino acid changes, near each other and near the loop region. The Ndc80 complex containing the mutant protein was just as stable, and bound to microtubules just as tightly, as the wild-type complex. So why did the cells die at higher temperatures?

Tien and colleagues visualized mitosis in the mutant cells using fluorescence microscopy. They could see that when they raised the temperature, dividing mutant cells had lots of aberrant attachments between chromosomes and the spindle. Because of these attachments, proceeding through mitosis caused their spindles to break—a lethal event.

However, if they timed the temperature shift to happen later in the cell cycle, the ndc80-121 mutant cells were fine. If chromosomes had already been lined up correctly on the spindle before the temperature was raised, then the rest of mitosis could go on without a problem.

Tien and coworkers wondered whether the mutation might disrupt the binding of some other protein to the complex at high temperatures. To look for interactions, they selected mutations that suppressed the heat-sensitive phenotype of ndc80-121. But they didn’t find any suppressor mutations in other genes. However, they did find an intragenic suppressor mutation within the ndc80-121 gene.

Interestingly, this mutation affected a residue that was on the other side of the loop relative to the original two changes. If the Ndc80 complex is a dumbell, imagine that the dumbell is collapsible like a two-segment tent pole, with the loop region of Ndc80 as the elastic between the sections. If you folded the complex in this way, the amino acids changed in the ndc80-121 mutant protein would be positioned close to the amino acid that the suppressor mutation affected—an intriguing explanation for how these mutations might affect each other.

The flexible loop region of Ndc80 allows it to fold tightly, like a tent pole.

Of course, genetic interactions don’t prove a direct physical interaction. So the researchers looked to see whether they could detect physical interactions between these regions. They treated the complex with a reagent that would permanently cross-link amino acids that were close to each other. Then they chopped the complex into smaller peptides using a protease, and analyzed the cross-linked peptides using mass spectrometry to locate the linked residues.

Sure enough, they were able to detect multiple cross-links within the complex, and their locations confirmed that the complex folds much like a tent pole. Based on their mutant phenotypes, the researchers think it’s likely that the original ndc80-121mutation destabilizes folding of the complex and that the intragenic suppressor mutation makes folding tighter. Consistent with this idea, the intragenic suppressor mutation alone confers a slow-growth phenotype, as if it makes the complex fold just a little too tightly to support vigorous growth.

These experiments as a whole establish that the Ndc80 complex folds tightly early in mitosis. So, creative inventors and Mother Nature have arrived at similar solutions for the tent pole and for this important complex. And just as collapsible tent poles have become ubiquitous in the backpacking world, so too has the collapsible Ndc80 complex been conserved throughout evolution: even the specific residues that mediate the folding are highly conserved. Since this work has shown that correct folding of the yeast complex is necessary for its role in helping chromosomes to line up accurately on the spindle, the same is almost certainly true in mammalian cells.

by Maria Costanzo, Ph.D., Senior Biocurator, SGD

Categories: Research Spotlight

Tags: protein structure , mitosis , Ndc80 complex , Saccharomyces cerevisiae

Next