New & Noteworthy

Sharing the Health

April 22, 2015

When yeast are forced to eat a meager diet, they not only live longer themselves but they also make a mysterious chemical that helps nearby yeast live longer. If they stay away from all-they-can-eat buffets, that is… Image by Andreas Praefcke via Wikimedia Commons


A study published a few years ago made a big splash in the health news by showing that obesity is socially contagious. If one person gains weight, their friends tend to gain weight too—even if they don’t live in the same town! This works the opposite way too: thinner people are more likely to be socially connected with thinner people.

You might think this is because people tend to make friends with others of a similar size, but this doesn’t seem to be the case. The researchers concluded that there is actually a cause-and-effect relationship: we all influence the weight of our friends.

Well, S. cerevisiae cells are not so different. They may not have social lives, but since they can’t move on their own, they do tend to live together in colonies. And within these colonies, they influence each other: not in terms of weight, but in terms of the effect that calorie intake has on the length of their lives.

Turns out that like nematodes, fruit flies and even mice, living on a meager diet makes yeast live longer. And in a new study published in PLOS Biology, Mei and Brenner found that yeast cells actually share the life-extending benefits of calorie restriction with their neighbors, probably via a still-unidentified small molecule.  

Yeast are normally grown in the lab on medium containing 2% glucose. To a yeast cell, this is like an all-you-can eat buffet that goes on for its entire lifetime. Media with a glucose content of 0.5% or less represent a meager diet. But that deprivation comes with a benefit, in the form of an extended lifespan.

Mei and Brenner already had some hints from previous studies that yeast cells might excrete a substance that promoted lifespan extension. To study this systematically, they devised an experiment to test whether mother cells change the media surrounding them as they divide.

The researchers placed individual mother cells in specific spots on Petri plates containing an all-you-can-eat buffet (2% glucose), a restrictive diet (0.5% glucose), or a near-starvation diet (0.2% glucose). They watched as the cells budded, and removed each new daughter cell as it separated from the mother, counting the buds. The lifespan of a mother yeast cell, termed the replicative lifespan, is measured as the number of times she can bud during her lifetime.

After the mother cells had budded 15 times, half of them were physically moved to fresh parts of the same plate, while the other half were left in place. For the mothers on the 2% glucose plates where calories were abundant, the move didn’t change anything. The mothers that were moved had exactly the same replicative lifespan as those that stayed put.

On the plates where calories were restricted, it was a different story. The cells that stayed in place had extended lifespans, as expected under these low-calorie conditions. But the cells that were moved to new locations lost most or all of the life extension—even though calories were still restricted in their new locations. This suggested that the mother cells had secreted a “longevity factor” into the medium surrounding them, which then extended their lifespan when they got older.

There were a couple of metabolites that were prime candidates for the longevity factor: nicotinic acid (NA) and nicotinamide riboside (NR). NA and NR are precursors to nicotinamide adenine dinucleotide (NAD+), a compound that acts as an essential cofactor for many important enzymes. They had already been implicated in lifespan extension because mutating genes involved in their metabolism can affect how long various creatures live.

When the scientists tried supplementing calorie-restricted cells that had been moved to fresh medium with either NA or NR, they found that supplying these metabolites could restore the longevity benefit.  This finding strengthens the idea that NAD+ metabolism is involved.

But was the longevity factor actually NA or NR? To test this, Mei and Brenner grew yeast in liquid media with the different glucose concentrations and then tested for NA and NR in the medium using liquid chromatography-mass spectrometry analysis.  They found that under all the conditions, the amount of NA secreted by the cells didn’t change and secreted NR was undetectable, suggesting that neither was the factor induced by calorie restriction.

To ask directly whether there is a diffusible longevity factor, the researchers grew cells in liquid medium containing 2% or 0.2% glucose until all the glucose was used up, then separated out the cells and freeze-dried the remaining liquid. They suspended the dried “conditioned” medium in water and spread it on plates to repeat the cell-moving assay.

Just like before, cells grown in 2% glucose had the same lifespan after being moved to a fresh spot, and the addition of resuspended conditioned medium to the plate didn’t change that. However, the starved cells grown on 0.2% glucose not only kept their lifespan extension when moved to conditioned media, but actually lived 10% longer compared to starved cells on un-conditioned media that were not moved.

When the researchers dialyzed the conditioned medium so that molecules smaller than 3.5 kDa were lost, the longevity factor was lost too. So it looks to be a small molecule, and of course they are actively pursuing its identity. Intriguingly, this would explain why other scientists have been unable to detect calorie restriction-induced lifespan extension in yeast using microfluidic technology, where immobilized yeast cells are grown with a constant exchange of growth medium. Under these conditions, a small molecule that promotes longevity would be washed away.

So, even though they don’t have Facebook friends, yeast cells influence the health of their peers. Rather than spreading the influence through social interactions as we humans do, they broadcast a chemical that is the key to long life. 

It’s tempting to think that the identity of this chemical will tell us something about human aging. But if this mysterious molecule worked in humans the same way as it does in yeast, people would still have to eat just enough food to stay alive to get the benefits. Still, perhaps the molecule can point us towards finding a treatment that will let us live longer while enjoying lots of good food. We could have our cake and eat it too!

by Maria Costanzo, Ph.D., Senior Biocuration Scientist, SGD

Categories: Research Spotlight

Tags: aging, calorie restriction, NAD+, Saccharomyces cerevisiae

Next