New & Noteworthy

Knock out YME1, Luke

April 20, 2017

Death Star Explosion & Millenium Falcon

Instead of an exhaust port, one of a mitochondrion’s fatal flaws may be the YME1 gene. Image from Manoel Lemos, flickr.

In the original Star Wars, Luke destroys the Death Star with a precise strike of proton torpedoes down a small thermal exhaust port. For him it was as easy as bullseyeing “womp rats in my T-16 back home.”

Luke and the rest of the Rebel Alliance learned of this engineered fatal flaw from Jyn and her friends in the prequel Rogue One. With this information the Rebel Alliance was able to keep the rebellion alive long enough to finally bring down the Empire by the end of Return of the Jedi.

It turns out that our friend Saccharomyces cerevisiae has taught us about a fatal flaw in mitochondria. Like proton torpedoes in an exhaust port, when the gene YME1 is inactivated, mitochondria become unstable. But instead of bits of Death Star raining down on nearby planets, mitochondrial DNA (mtDNA) is released into the cytoplasm.

Sometimes this mtDNA can end up in the nucleus and find its way into nuclear DNA. And if the conclusions of a new study in Genome Medicine by Srinivasainagendra and coworkers turns out to be right, this numtogenesis (as the authors call this process) can have profound consequences when it happens in people. Their data suggests that it might lead to cancer or possibly cause cancers to spread.

These researchers searched through whole genomes of colon adenocarcinoma patients and found that these cancer cells had 4.2-fold more mtDNA insertions compared to noncancerous cells from the same patient. They also found that patients with more of these insertions tended to do worse (although the sample sizes were too small to say this definitively).

Why is this happening in the cancer cells? What has caused the mitochondria to give up their DNA?

Srinivasainagendra and coworkers turned to previous work that had been done on the YME1 gene in the yeast S. cerevisiae to find one possible reason. YME1 had been shown to be an important suppressor mtDNA migration to the nucleus. Perhaps this was true in mammalian cells as well.

A search through the genomes of cancers suggested that this seemed to be the case. Around 16% of the colorectal tumors they looked at had a mutated YME1L1 gene, the human homologue of YME1. And mutated YME1L1 genes were found in other tumors as well.

If only destroying gene function was as fun.

They used CRISPR/Cas9 to directly test the effects of knocking out YME1L1 in the breast cancer cell line MCF-7. The knock out cells had a 4-fold increase in the amount mtDNA in the nuclear fraction compared to cells that still had working YME1L1.

As a final experiment, they used a yeast strain, yme1-1, in which YME1 function was inactivated, to show that the human homologue, YME1L1, could suppress the migration of mtDNA to the nucleus.

This yme1-1 strain has a TRP1 gene encoded in the mtDNA instead of the nucleus. Since the gene cannot be read by the mitochondrial transcription machinery, the only way this yeast strain can survive in the absence of tryptophan is if the TRP1 gene moves from the mitochondrion to the nucleus. 

In their experiment, with vector alone, they got around 1000 TRP+ colonies with yme1-1. When they added back yeast YME1, this number dropped to less than 50 compared to the 100 or so they got when they added the human homologue, YME1L1. So YME1L1 can suppress mtDNA migration to the nucleus.  

Given that YME1L1 was mutated in just a subset of the cancers, it is unlikely that it is the only player in the mtDNA these authors found in the nuclei of cancer cells. But it does look like it is one way this can happen.

And it would have been very hard to fish out the human gene without the critical work that had been done in yeast previously. Yeast shows us the way again. #APOYG

by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics

Categories: Research Spotlight

Tags: nuMt , nuMtogenesis , cancer , YME1L1 , MCF-7 , mtDNA , YME1 , colon cancer , CRISPR/Cas9