New & Noteworthy

Ribosomes Caught in the Act

November 24, 2014

If you want to see what animals really do out in the wild, first you need to hide a camera and a trip-wire so well that the jungle seems totally undisturbed. Then, if you’re lucky, you’ll be able to catch them in the middle of the night as they pass by. Now you can surprise that tiger and find out what he is doing at that specific spot.

The Weissman group has developed a technique for catching ribosomes as they go about their normal business, just like this tiger making his nightly rounds of the jungle. Image from Wikimedia Commons

In two companion Science articles from the Weissman group at UCSF, Jan et al. and Williams et al. did essentially the same thing to S. cerevisiae ribosomes. They hid a molecular tag and the enzyme that recognizes it at various interesting places within yeast cells, so cleverly that the cells had no idea anything was different. Instead of a flash of light, they used a pulse of the small molecule biotin to find out which mRNAs were being translated at specific locations in the cell.

What they found was that when ribosomes are translating proteins that are targeted to a particular organelle, they hang around the surface of that organelle—way more frequently than was previously thought. And the exquisite specificity of this technique, allowing them to pinpoint one particular mRNA within the cell, uncovered a fascinating case of dual protein localization.

Pinpointing Translation Locations

The researchers needed to develop a technique for catching ribosomes in the act of translation. One part of this had already been worked out in the same group: ribosomal profiling, a method that allows you to map very precisely the positions of ribosomes on mRNAs.

Briefly, cells are lysed and translating ribosomes are treated with nucleases that nibble away mRNAs, except for the 30 nucleotides or so that are protected within the ribosome. Then those protected fragments are analyzed by deep sequencing. This shows, at the single nucleotide level, where ribosomes are sitting on each individual mRNA.

Ribosomal profiling tells us where translating ribosomes are in relation to mRNAs, but not where they are in relation to the rest of the cell. To get this location information, the researchers came up with a clever tagging strategy.

They started with a bacterial gene, E. coli BirA, that encodes a biotin ligase—an enzyme that can attach biotin to specific acceptor peptides. They fused BirA to various yeast genes in order to target biotin ligase to different places in the cell.

Next they tagged ribosomes by putting a biotin acceptor, called the AviTag, on ribosomal proteins such that the tag would be sticking out on the ribosomal outer surface. They tested both the BirA and AviTag fusions to make sure that they didn’t interfere with the functions of any proteins. Just like the camera hidden in the jungle, the tags didn’t perturb yeast cells in the least.

Now the researchers were set to surprise ribosomes with a pulse of biotin. Any ribosomes that were close to BirA would become biotinylated. The tagged ribosomes could then be isolated, and the mRNA sequences being translated in those ribosomes could be identified. The method as a whole is termed proximity-specific ribosomal profiling.

A translating ribosome. Image from Wikimedia Commons

Jan and coworkers set up and validated this method in their paper, and used it to look at translation of secretory proteins at the surface of the endoplasmic reticulum (ER), while Williams and colleagues used the method to look closely at translation at the mitochondrial surface. Import into both of those organelles has previously been studied intensively, but often in vitro and mostly for just a few model protein substrates. In contrast, proximity-specific ribosomal profiling gives us the ability to look at translation of the entire proteome in vivo.

While it was known before that proteins targeted towards a certain organelle tended to be translated near that organelle, these researchers found that it was much more common than previously believed. For example, they found that most mitochondrial inner membrane proteins were translated at the mitochondrial surface and imported cotranslationally, in contrast to the previous view that mitochondrial import is predominantly posttranslational.

Both studies discovered many more details than we can summarize here. But the comparison between the ER and mitochondrial studies led to a special insight about one protein.

Osm1p Goes Both Ways

Osm1p, fumarate reductase, was thought to be a mitochondrial protein (although results from a few high-throughput studies had hinted at a link to the ER). But proximity-specific ribosomal profiling showed very clearly that it was translated at both the ER and mitochondrial surfaces. Williams and coworkers went on to confirm by fluorescence microscopy of an Osm1p-GFP fusion that Osm1p is indeed present in both ER and mitochondria.

Both of these organelles have pretty strict criteria for the signal sequences of proteins they import, so how could it be possible that the same protein goes to both locations? The researchers found that in fact, it’s not! They repeated the ribosomal profiling on the OSM1 mRNA, this time adding the drug lactimidomycin which makes ribosomes pile up at translational start sites. This showed that OSM1 actually has two start codons and produces two different proteins targeted to the two locations.

The OSM1 methionine codon currently annotated as the start would produce a protein with an ER targeting signal. Ribosomes piled up there, but also at another methionine codon 32 codons downstream. Starting translation at this codon would produce a protein with a mitochondrial targeting signal. Williams and colleagues confirmed this idea by showing that mutating the first Met codon made all of the Osm1p go to mitochondria, while mutating the Met codon at position 32 sent all of it to the ER.

The mutant form of Osm1p that couldn’t go to the ER conferred an intriguing phenotype: the inability to grow in the absence of oxygen. Osm1p generates oxidized FAD, which is necessary for oxidative protein folding, and it also interacts genetically with ERO1, which is involved in this process. Taken together, this all suggests that Osm1p activity drives oxidative protein folding in the ER.

The traditional ways of determining where a protein is in the cell, microscopic visualization or physical fractionation, can both be difficult and imprecise. Proximity-specific ribosomal profiling gets around those challenges, and gives a very precise picture of exactly where proteins are being created and how ribosomes are oriented with respect to organelles.

The example of Osm1p localization gives just a hint of the insights that are waiting for scientists who exploit this technique further. And we’re not just talking about yeast: the authors tested and validated the method in mammalian cells. Just like that tiger, surprised ribosomes in many different cell types will be giving up their secrets about where they roam and what they do.

by Maria Costanzo, Ph.D., Senior Biocurator, SGD

Categories: Research Spotlight

Tags: protein targeting , translation , mitochondria , endoplasmic reticulum , Saccharomyces cerevisiae

Pinpointing Peroxisomes

August 14, 2014

The contents of the cell certainly move around, but they’re not quite as mobile as the blobs in this lava lamp. Image from Wikimedia Commons

One way to think about the cell is that organelles float around in it like those globs in a lava lamp.  This is obviously a simplification, but it’s also true that organelles aren’t locked into place.  As usual, the real picture lies somewhere in between these two extremes.

What we know about the architecture of the cell has mostly been discovered using classical cell biology and genetic techniques. But in a paper published in Molecular BioSystems, Cohen et al. uncovered some very interesting small details using a very large-scale approach.

The authors were interested in peroxisomes, where a lot of critical metabolic reactions happen (or fail to happen, in several human diseases). The researchers were able to see that peroxisomes not only interact with other organelles, but they contact the endoplasmic reticulum (ER) and mitochondria in a way that could be extremely important for cellular metabolism. And surprisingly, it was by combining a variety of different high-throughput techniques that Cohen and colleagues could uncover this fine structure.

The first step was to set up two reporter constructs to look for genes involved in two different peroxisomal processes.

One reporter was a red fluorescent protein, mCherry, modified to carry a peroxisomal targeting signal and show whether import into peroxisomes was normal. Another reporter, a peroxisomal membrane protein (Ant1p) tagged with green fluorescent protein (GFP), would show whether peroxisomal membranes were normal.

The reporters were crossed into mutant collections, creating one strain for each gene in the genome that had either a complete deletion (for nonessential genes) or a knock-down allele (for essential genes), plus both reporters. Now the researchers could systematically test for genes that, when mutated, affected one or both of these aspects of peroxisomal biogenesis.

To visualize the mutant phenotypes, they used a sophisticated technique termed “high-content screening.” This is an automated way to analyze micrographs that both pinpoints the intracellular location of a fluorescent reporter and measures its quantity. Screening the mutant collection in this way showed that 56 strains had altered distribution of the two different reporter proteins.  Some had a reduction in peroxisomal protein import (mCherry fluorescence), while some had fewer or no peroxisomes and some had peroxisomes that were smaller than normal (GFP fluorescence).

One result that caught the researchers’ eyes was that one of the strains with smaller peroxisomes had a mutation in the MDM10 gene. Mdm10p is part of the ERMES (ER-Mitochondria Encounter Structure) complex that tethers mitochondria to the ER, and this wasn’t previously known to have any connection with peroxisomes. Strains that were mutant in other ERMES subunits had the same phenotype, confirming that the complex has something to do with peroxisome structure.  Other results from the screens added weight to the idea of a three-way connection between peroxisomes, the ER, and mitochondria, and the authors went on to show that peroxisomes often sit at the ERMES complex where mitochondria contact the ER.

Next, to test whether mitochondria might have specific subdomains where peroxisomes interact, the authors used yet another large-scale screen. In the C-terminal GFP fusion library, where each yeast open reading frame is C-terminally tagged with GFP, 96 strains showed a punctate pattern of the fluorescent signal – meaning that the protein was concentrated in spots, rather than evenly distributed.  They labeled the mitochondria with a red fluorescent marker protein in these strains and, again using the high-content screening system, identified protein spots that co-localized with mitochondria. The most intense hit was for Pda1p, a subunit of the mitochondrial enzyme pyruvate dehydrogenase (PDH), and a similar result was obtained for another PDH subunit. So PDH isn’t distributed uniformly in the mitochondrion, but is instead concentrated in clusters.

Looking more closely using the various reporter constructs in their collections, the authors found that peroxisomes and the ERMES complex most often co-localized with those mitochondrial globs of PDH. It would make metabolic sense for peroxisomes to hang out near PDH on mitochondria because this could increase the local concentration of metabolites that they both use.

Intriguingly, Cohen et al. also found that mitochondria and peroxisomes co-localized in mammalian cells. Given that many diseases are linked to peroxisomal metabolism, this is an important avenue to investigate.

So while organelles don’t float around in the cell quite as fluidly as the globs in a lava lamp, the data generated from large-scale approaches boiled down to learning some very fine-grained detail about cellular architecture. We think that’s, like, groovy.

by Maria Costanzo, Ph.D., Senior Biocurator, SGD

Categories: Research Spotlight Yeast and Human Disease

Tags: Saccharomyces cerevisiae , mitochondria , endoplasmic reticulum , peroxisomes