July 02, 2018
When someone says they can “read you like a book”, they probably aren’t saying that they know your entire genome sequence. (…or for you Westworld fans, you certainly hope they aren’t saying they’ve got access to the Delos Incorporated “library”!).
But in fact everyone’s genome CAN be thought of as a book, sort of like a giant cookbook. Within your genome are many “recipes” for gene products — DNA sequences that each give instructions on how, when, and where to make a protein or RNA molecule. The recipes of the genome are used to “cook up” a person!
When a parent cell divides and creates another cell, it makes a copy of its genome “cookbook” and passes it down to the new cell. It’s extremely important to make sure that there aren’t any errors in the newly copied text, as mistakes in recipes for crucial enzymes can have disastrous results for the cell. Indeed, our cells (as well as yeast cells, and in fact, all organisms) have enzymes that are dedicated to scrupulously inspecting the new copies of our genome cookbooks that are made during cell division, and then helping to correct any errors.
A certain class of these enzymes are known as DNA mismatch repair (MMR) proteins. These enzymes carefully proofread the newly made copy of the genome, and if something doesn’t match the original version, they will help fix the error.
You might think that having more of these MMR proteins would be a good thing, because there would be more thorough checking and repairing of the new copy of the genome. But the situation isn’t so simple, especially when it comes to human cancer.
Previous studies show that some cancers and cancer predisposition syndromes have less of the MMR proteins. This makes sense because cancers almost always arise due to genome mutations, and it is known that if a cell has less of the error-checking MMR proteins, there are more genome mutations. However, other studies report a puzzling discrepancy: in some cancers, there are in fact MORE of the MMR proteins rather than less!
In their recent GENETICS study, Chakraborty and coworkers decided to investigate this discrepancy further. They analyzed data from two databases of human cancer genome information, The Cancer Genome Atlas (TCGA) and the cBioPortal for Cancer Genomics, specifically looking at how much the genes encoding MMR proteins were turned on or off in cancer.
They observed that many types of human cancer cells make more of two particular MMR proteins: MSH2 and MSH6. It turns out (as it often does!) that our good buddy Saccharomyces cerevisiae has MMR proteins very similar to the human ones, also encoded by genes called MSH2 and MSH6. So Chakraborty and coworkers made yeast cells that overexpress the yeast genes MSH2 and MSH6 and used the awesome power of yeast genetics (and genomics) (#APOYG!) to investigate whether this might lead to cellular and genome changes like those seen in human cancers.
Using various yeast genetic assays to measure rates of genome alterations such as homologous recombination, mutations, and loss of large chromosome regions, Chakraborty et al. observed increased rates for all of these measures of genome instability in cells when both MSH2 and MSH6 were overexpressed, but not for overexpression of either one alone (or of other MMR proteins). So even though there are more of the “good guy” MMR proteins in these cells, this actually ends up making the genome of the cell MORE likely to get damaging mutations of the same types seen in cancer cells.
So why is too much of a good thing such a bad thing in this case? The authors hypothesize that both Msh2p and Msh6p act together as a joined pair to go to the spot where the chromosomal DNA is actively being copied (“replicated”). When they are both overexpressed, too many of the Msh2p-Msh6p pairs can go to the replication spot and actually interfere with the copying process.
It’s as if you were a medieval scribe carefully copying an illuminated manuscript of a genome cookbook, and instead of one supervisor occasionally checking your work, there are a bunch of people constantly looking over your shoulder and maybe even bumping into your arm, causing you to make mistakes in your writing. They may even make you drop the book you’re copying, scattering pages so that you might leave some out or put them back in the wrong order, seriously messing up your work!
Here’s hoping our cells don’t overdo it with their MMR proteins, so that they can be careful with their cookbook copying job and do it “write”!
by Barbara Dunn, Ph.D. and Kevin MacPherson, M.S.
Categories: Research Spotlight
Tags: cancer, DNA mismatch repair, DNA replication, MSH2, MSH6
April 04, 2017
Sometimes in life you need to take risks to survive and prosper. Maybe you need to take a leap of faith like Bruce Wayne does to escape that pit in The Dark Knight Rises. Or you need to try a risky business strategy to put your company out in front.
While these are critical things to do at the time, chronic risk-taking is not usually a good idea. Even Bruce Wayne retires to Florence at the end of The Dark Knight Rises, his risky life choices done now that he has saved his beloved Gotham City. He can now settle down with Selina Kyle (Catwoman) and live happily (and safely) ever after.
Something similar can happen in the budding yeast, Saccharomyces cerevisiae. In the right environment, certain yeasts can build up mutations like mad, hoping to hit on one that lets them make it out of that pit.
But then, over time, yeasts with the successful mutation lose that frenetic mutation rate—they take fewer risks with their DNA. One way they can do this is by ending up with a mutation that suppresses the high mutation rate. This is like Bruce Wayne retiring to a nice villa on the Arno.
Another way they can reestablish their old mutation rate is to mate with a nonmutator, a yeast strain that does not risk its DNA with a high mutation rate. Now, the next generations have the beneficial mutation and a lowered mutation rate as well. It is as if Bruce Wayne settled down with an accountant instead of Catwoman and had risk-averse children to carry on the Wayne name.
Bui and coworkers investigate this phenomenon in yeast in a new study out in GENETICS. They show that natural isolates exist that can sporulate into one of these mutator strains. And that at least one strain predicted to have a high mutation rate has a number of suppressor mutations that tamp down that higher rate.
Previous work had shown that a high mutation rate can happen with mutations in two genes in the mismatch repair (MMR) pathway, MLH1 and PMS1. This was discovered when researchers saw that some of the haploid strains from a mating of two laboratory strains, S288C and SK1, showed this mutator phenotype. A closer look revealed that S288C has a mutation in MLH1, and SK1 has a mutation in PMS1.
Bui and coworkers show that these mutator haploid strains outcompete other strains in high salt media. The strain hits upon mutations that allowed for better survival in high salt faster than its slower mutating brethren. But this advantage does not last.
After 120 generations these mutator strains start to lag behind strains with more typical mutation rates. Their DNA becomes as beat up as Bruce Wayne’s body by the third movie.
The researchers next looked at the MLH1 and PMS1 genes of 1,010 natural isolates of S. cerevisiae to see if there were any that might be able to sporulate into a mutator strain. Or that were already mutator strains themselves.
Since the mutations that lead to the mutator phenotype are recessive, strains that are heterozygotes for mutations in both genes should be able to form haploid spores with the higher mutation rate. They found 18 that fit the bill.
They also found one strain, YJM523, that was homozygous for both mutations and so would be predicted to have a high mutation rate. They further investigated this strain.
The first thing they did was to test the YJM523 mutant genes in an S288C background. They found that these two mutant genes did indeed give S288C a mutator phenotype. In fact, it had a higher mutation rate than the original genes from S288C and SK1 did, suggesting there were other mutations in one or both YJM523 genes that further increased the mutation rate.
These researchers next wanted to determine if YJM523 had a higher mutation rate or not, but needed to first develop a new assay that could be used in natural isolates. They came up with a reporter system that is not dependent on the typical markers used in yeast experiments, but instead relies on two antibiotic markers.
The reporter uses the NatMX antibiotic resistance marker for selection and the KanMX marker to identify revertant mutants. By scoring the number of colonies resistant to both antibiotics, they could determine the mutation rate.
When the researchers did this experiment, they found that YJM523 did not have a particularly high mutation rate. Sporulation experiments showed that this was most likely due to multiple suppressor mutations.
So out in the wild, the potential for mutator strains exists. And a close look at the genome of YJM523 showed that if it did have a mutator phenotype, it was for a short time. This yeast at least quickly lost its high mutation rate (assuming it ever had one).
This study helps to explain how yeast can obtain that mutator phenotype that researchers have seen before. And how yeast can escape that mutation pit to get back to the safety of a reasonable DNA repair pathway. To quote the prisoners in The Dark Knight, “Deshi Basara”, or ‘rise up’ yeast!
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: adaptation, DNA mismatch repair, experimental evolution, genetic incompatibility, mutator phenotype, natural yeast isolates