New & Noteworthy

The Gift for the Man Who Has Everything

July 08, 2015


Gifts can be hard to buy for some people. They have everything they need and not many outside interests. What to do?

Having trouble finding that personal gift for that impossible to buy for person? How about a vanity protein with their name written right into the amino acid sequence? Image by D. Barry Starr

You could name a star after them or get them some knick knack they don’t need. Or you could design a personalized protein that has their name in it, solve the structure and present them with the picture.

This is what Deiss and coworkers did to celebrate the 50th birthday of their colleague Andrei N. Lupas, a key figure in studying coiled-coil proteins. They created a personalized protein based on Gcn4 from Saccharomyces cerevisiae. And of course Gcn4 is a coiled-coil protein!

Coiled-coil proteins are the perfect clay for biosculpting a personalized protein. They follow a relatively simple set of rules which makes it easy to predict how they will fold. There isn’t much of the “protein folding problem” with these user-friendly proteins.

Basically these proteins consist of repeated 7 amino acid motifs that each form an alpha helix. They have hydrophobic residues down one face of the helix so that they will tend to oligomerize with each other to keep the hydrophobic residues away from the water. These helices spontaneously coil up like a rope (hence their name).

The 7 amino acids of a repeat are usually represented as abcdefg and are arranged in the pattern hxxhcxc, with h being hydrophobic residues, c being charged residues and x being most any other amino acid. So a and d must be hydrophobic, and e and g charged. That’s pretty much it!

Deiss and coworkers used the name Andrei N. Lupas to create a personalized coiled coil. They replaced 12 amino acids in Gcn4 with the amino acids represented by the letters in his name. Well, they were able to do that for most of the letters.

First off, they had to Roman things up a bit and turn the U into a V (there is no amino acid with the single amino acid code U). So here is the amino acid sequence they used and how they lined it up with the 7-amino acid repeats:

In this arrangement, the hydrophobic residues are asparagine, isoleucine, and valine, and the charged residues are aspartic acid, glutamic acid, proline, and serine. Obviously the last two are not optimal, especially the proline. Proline has an especially rigid conformation and is known to wreak havoc with alpha helices.

When the authors analyzed the protein, they found that as predicted, the proline disrupted the part of the alpha helix with which it was associated. But not enough to completely destroy the coiled coil structure. X-ray diffraction showed that this protein was still able to trimerize properly. They had created a distorted but functional personalized protein. What other kind would anyone want!

And it isn’t as if proline is completely absent from the heptad repeats of coiled-coil proteins. A quick search by the authors found two viral fusion proteins, 1ZTM and 3RRT, that could form a trimer even though they too had prolines. In both of these proteins the proline is in the f position.

They also found 4 dimers with a proline in a heptad repeat. In these cases the proline is at b or c. So no known natural coiled-coil proteins have a proline at the e position. Talk about personalized!

How cool is all of this, and who wouldn’t want a protein of their very own? Unfortunately, not everyone can easily have one.

For example, President Barack Obama would have real trouble since there are no amino acids designated with a B or an O and there is no obvious way to transform these letters into ones that are present in the single letter code. Jeb Bush is out too, but maybe we can do something with Hillary Clinton. Let’s see if we can line up the amino acids of her first name to create a personalized Gcn4 just for her.

“HILLARY” isn’t too bad by itself. All the letters are amino acids (yay) and a and d are hydrophobic (isoleucine and alanine). Aspartic acid works very well for e and while probably not perfect, histidine isn’t too bad for g. The tyrosine at position f is not ideal either but is way better than a proline. This thing might replace one heptad repeat in Gcn4 without causing too many problems.

So what about your name? Can you turn yours into a heptad repeat to create your own personalized Gcn4? 

by D. Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics

Categories: Research Spotlight

Tags: coiled coil , Saccharomyces cerevisiae

Next