AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Zhou P
  • References

Author: Zhou P


References 44 references


No citations for this author.

Download References (.nbib)

  • Zhang B, et al. (2024) A comparative study to investigate the individual contribution of metabolic and physical interaction on volatiles formation in the mixed fermentation of Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Microbiol 119:104460 PMID:38225043
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou X, et al. (2024) Structure-guided engineering of 4-coumarate: CoA ligase for efficient production of rosmarinic acid in Saccharomyces cerevisiae. J Biotechnol 396:140-149 PMID:39536797
    • SGD Paper
    • DOI full text
    • PubMed
  • Gao X, et al. (2023) The multiple activations in budding yeast S-phase checkpoint are Poisson processes. PNAS Nexus 2(11):pgad342 PMID:37941810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P, et al. (2023) Engineered Artificial Membraneless Organelles in Saccharomyces cerevisiae To Enhance Chemical Production. Angew Chem Int Ed Engl 62(14):e202215778 PMID:36762978
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2023) Combining Protein and Organelle Engineering for Linalool Overproduction in Saccharomyces cerevisiae. J Agric Food Chem 71(26):10133-10143 PMID:37350414
    • SGD Paper
    • DOI full text
    • PubMed
  • Jiao X, et al. (2022) Recent advances in construction and regulation of yeast cell factories. World J Microbiol Biotechnol 38(4):57 PMID:35174424
    • SGD Paper
    • DOI full text
    • PubMed
  • Li M, et al. (2022) Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth Biol 11(8):2636-2649 PMID:35914247
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu H, et al. (2022) Engineering membrane asymmetry to increase medium-chain fatty acid tolerance in Saccharomyces cerevisiae. Biotechnol Bioeng 119(1):277-286 PMID:34708879
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu H, et al. (2022) Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 13(1):1886 PMID:35393407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P, et al. (2022) Alleviation of the Byproducts Formation Enables Highly Efficient Biosynthesis of Rosmarinic Acid in Saccharomyces cerevisiae. J Agric Food Chem 70(16):5077-5087 PMID:35416041
    • SGD Paper
    • DOI full text
    • PubMed
  • Bian Q, et al. (2021) Heterologous biosynthesis of lutein in S. cerevisiae enabled by temporospatial pathway control. Metab Eng 67:19-28 PMID:34077803
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2021) Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in Saccharomyces cerevisiae. J Agric Food Chem 69(3):1003-1010 PMID:33427461
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2021) Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid. Appl Microbiol Biotechnol 105(14-15):5809-5819 PMID:34283270
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2021) Development of a Highly Efficient Copper-Inducible GAL Regulation System (CuIGR) in Saccharomyces cerevisiae. ACS Synth Biol 10(12):3435-3444 PMID:34874147
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang J, et al. (2020) Chiral Active β-Glucan Nanoparticles for Synergistic Delivery of Doxorubicin and Immune Potentiation. Int J Nanomedicine 15:5083-5095 PMID:32764938
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen B, et al. (2020) Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat Commun 11(1):5155 PMID:33056995
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao R, et al. (2020) Sml1 Inhibits the DNA Repair Activity of Rev1 in Saccharomyces cerevisiae during Oxidative Stress. Appl Environ Microbiol 86(7) PMID:32005731
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P, et al. (2020) Directed evolution of the transcription factor Gal4 for development of an improved transcriptional regulation system in Saccharomyces cerevisiae. Enzyme Microb Technol 142:109675 PMID:33220863
    • SGD Paper
    • DOI full text
    • PubMed
  • Yao Z, et al. (2018) Enhanced Isoprene Production by Reconstruction of Metabolic Balance between Strengthened Precursor Supply and Improved Isoprene Synthase in Saccharomyces cerevisiae. ACS Synth Biol 7(9):2308-2316 PMID:30145882
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2018) Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol Bioeng 115(5):1321-1330 PMID:29315481
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2018) Crystal structure of cytoplasmic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 74(Pt 1):6-13 PMID:29372902
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang F, et al. (2017) Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng 39:257-266 PMID:28034770
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (2017) Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Technol 100:28-36 PMID:28284309
    • SGD Paper
    • DOI full text
    • PubMed
  • Lv X, et al. (2016) Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun 7:12851 PMID:27650330
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie W, et al. (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69-78 PMID:25959020
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang H, et al. (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169-173 PMID:25260180
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin D, et al. (2013) Re-annotation of protein-coding genes in the genome of saccharomyces cerevisiae based on support vector machines. PLoS One 8(7):e64477 PMID:23874379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tian F, et al. (2013) Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems 113(1):40-9 PMID:23665477
    • SGD Paper
    • DOI full text
    • PubMed
  • Bomar MG, et al. (2010) Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol Cell 37(3):408-17 PMID:20159559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Woodruff RV, et al. (2010) The unusual UBZ domain of Saccharomyces cerevisiae polymerase η. DNA Repair (Amst) 9(11):1130-41 PMID:20837403
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li M, et al. (2005) Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci U S A 102(49):17636-41 PMID:16314571
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P (2004) Determining protein half-lives. Methods Mol Biol 284:67-77 PMID:15173609
    • SGD Paper
    • DOI full text
    • PubMed
  • Sun Q, et al. (2001) [Establishment of suc2 signal sequence trap system]. Yi Chuan Xue Bao 28(4):379-84 PMID:11329881
    • SGD Paper
    • PubMed
  • Zhou P, et al. (2001) The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI(+)] and [PIN(+)]. Mol Microbiol 39(1):37-46 PMID:11123686
    • SGD Paper
    • DOI full text
    • PubMed
  • Kleijnen MF, et al. (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6(2):409-19 PMID:10983987
    • SGD Paper
    • DOI full text
    • PubMed
  • Xin M and Zhou P (2000) [Effect of temperature on the activity of some enzymes representative of EMP pathway and TCA cycle in psychrophilic yeast]. Wei Sheng Wu Xue Bao 40(5):518-22 PMID:12548764
    • SGD Paper
    • PubMed
  • Zhou P, et al. (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 6(3):751-6 PMID:11030355
    • SGD Paper
    • DOI full text
    • PubMed
  • Derkatch IL, et al. (1999) The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr Genet 35(2):59-67 PMID:10079323
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P, et al. (1999) The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 18(5):1182-91 PMID:10064585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P and Howley PM (1998) Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2(5):571-80 PMID:9844630
    • SGD Paper
    • DOI full text
    • PubMed
  • Derkatch IL, et al. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147(2):507-19 PMID:9335589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou P, et al. (1994) A system for gene cloning and manipulation in the yeast Candida glabrata. Gene 142(1):135-40 PMID:8181748
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou P and Thiele DJ (1993) Copper and gene regulation in yeast. Biofactors 4(2):105-15 PMID:8347274
    • SGD Paper
    • PubMed
  • Zhou P and Thiele DJ (1993) Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification. Genes Dev 7(9):1824-35 PMID:8370529
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top