AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Zeng X
  • References

Author: Zeng X


References 32 references


No citations for this author.

Download References (.nbib)

  • Yao L, et al. (2023) Major Active Metabolite Characteristics of Dendrobium officinale Rice Wine Fermented by Saccharomyces cerevisiae and Wickerhamomyces anomalus Cofermentation. Foods 12(12) PMID:37372580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang G, et al. (2022) T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase. Int J Mol Sci 23(4) PMID:35216443
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen L, et al. (2021) Metabolite discovery through global annotation of untargeted metabolomics data. Nat Methods 18(11):1377-1385 PMID:34711973
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang G, et al. (2021) Atp23p and Atp10p coordinate to regulate the assembly of yeast mitochondrial ATP synthase. FASEB J 35(6):e21538 PMID:33956347
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (2021) Commercial Saccharomyces cerevisiae as a starter culture in "Wanergao": A traditional fermented food in China. Food Sci Technol Int 27(3):197-209 PMID:32718196
    • SGD Paper
    • DOI full text
    • PubMed
  • Buck TM, et al. (2020) The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation. Mol Cell Proteomics 19(11):1896-1909 PMID:32868373
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan T, et al. (2020) A Rice Autophagy Gene OsATG8b Is Involved in Nitrogen Remobilization and Control of Grain Quality. Front Plant Sci 11:588 PMID:32582228
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (2020) Effect of red koji as a Starter Culture in "Wanergao": A Traditional Fermented Food in China. Food Sci Nutr 8(10):5580-5590 PMID:33133560
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang B, et al. (2020) Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 104(18):7991-8006 PMID:32776206
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (2019) Technological properties and probiotic potential of yeasts isolated from traditional low-salt fermented Chinese fish Suan yu. J Food Biochem 43(8):e12865 PMID:31368569
    • SGD Paper
    • DOI full text
    • PubMed
  • He W, et al. (2018) Sc-ncDNAPred: A Sequence-Based Predictor for Identifying Non-coding DNA in Saccharomyces cerevisiae. Front Microbiol 9:2174 PMID:30258427
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shao Y, et al. (2018) Creating a functional single-chromosome yeast. Nature 560(7718):331-335 PMID:30069045
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (2017) A barley homolog of yeast ATG6 is involved in multiple abiotic stress responses and stress resistance regulation. Plant Physiol Biochem 115:97-106 PMID:28343064
    • SGD Paper
    • DOI full text
    • PubMed
  • Shen Y, et al. (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26(1):36-49 PMID:26566658
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu D, et al. (2015) Inhibitory activities of caffeoylquinic acid derivatives from Ilex kudingcha C.J. Tseng on α-glucosidase from Saccharomyces cerevisiae. J Agric Food Chem 63(14):3694-703 PMID:25805337
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhou Q, et al. (2014) Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae. Sci Rep 4:6556 PMID:25296911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rak M, et al. (2009) Assembly of F0 in Saccharomyces cerevisiae. Biochim Biophys Acta 1793(1):108-16 PMID:18672007
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang H, et al. (2009) Fibrinogen has chaperone-like activity. Biochem Biophys Res Commun 378(3):662-7 PMID:19059206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (2008) ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase. Mol Biol Cell 19(4):1366-77 PMID:18216280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (2007) The leader peptide of yeast Atp6p is required for efficient interaction with the Atp9p ring of the mitochondrial ATPase. J Biol Chem 282(50):36167-76 PMID:17940284
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (2007) The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol Biol Cell 18(2):617-26 PMID:17135290
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (2007) The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor. Genetics 175(1):55-63 PMID:17110482
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (2003) Hypomutable regions of yeast TFIIB in a unigenic evolution test represent structural domains. Gene 309(1):49-56 PMID:12727357
    • SGD Paper
    • DOI full text
    • PubMed
  • Meng FG, et al. (2001) Dissociation and unfolding of GCN4 leucine zipper in the presence of sodium dodecyl sulfate. Biochimie 83(10):953-6 PMID:11728632
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X and Saunders WS (2000) The Saccharomyces cerevisiae centromere protein Slk19p is required for two successive divisions during meiosis. Genetics 155(2):577-87 PMID:10835382
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang DY, et al. (2000) Intramolecular interaction of yeast TFIIB in transcription control. Nucleic Acids Res 28(9):1913-20 PMID:10756191
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (1999) Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol 146(2):415-25 PMID:10427094
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huyett A, et al. (1998) The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J Cell Sci 111 ( Pt 3):295-301 PMID:9427678
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeng X, et al. (1997) Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci 6(10):2218-26 PMID:9336844
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (1997) Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p. Genetics 147(2):493-505 PMID:9335588
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tornow J, et al. (1993) GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J 12(6):2431-7 PMID:8508768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeng X, et al. (1993) Role of cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein. Biochemistry 32(10):2704-9 PMID:8448127
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top